Previous |  Up |  Next

Article

Title: A new characterization for the simple group ${\rm PSL}(2,p^2)$ by order and some character degrees (English)
Author: Khosravi, Behrooz
Author: Khosravi, Behnam
Author: Khosravi, Bahman
Author: Momen, Zahra
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 1
Year: 2015
Pages: 271-280
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group and $p$ a prime number. We prove that if $G$ is a finite group of order $|{\rm PSL}(2,p^2)|$ such that $G$ has an irreducible character of degree $p^2$ and we know that $G$ has no irreducible character $\theta $ such that $2p\mid \theta (1)$, then $G$ is isomorphic to ${\rm PSL}(2,p^2)$. As a consequence of our result we prove that ${\rm PSL}(2,p^2)$ is uniquely determined by the structure of its complex group algebra. (English)
Keyword: character degree
Keyword: order
Keyword: projective special linear group
MSC: 20C15
MSC: 20C33
MSC: 20D05
MSC: 20D06
MSC: 20D60
idZBL: Zbl 06433734
idMR: MR3336038
DOI: 10.1007/s10587-015-0173-6
.
Date available: 2015-04-01T12:45:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144226
.
Reference: [1] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Clarendon Press, Oxford (1985). Zbl 0568.20001, MR 0827219
Reference: [2] Crescenzo, P.: A diophantine equation which arises in the theory of finite groups.Adv. Math. 17 (1975), 25-29. Zbl 0305.10016, MR 0371812, 10.1016/0001-8708(75)90083-3
Reference: [3] Huppert, B.: Some simple groups which are determined by the set of their character degrees. I.Ill. J. Math. 44 (2000), 828-842. Zbl 0972.20006, MR 1804317
Reference: [4] Huppert, B.: Character Theory of Finite Groups.De Gruyter Expositions in Mathematics 25 Walter de Gruyter, Berlin (1998). Zbl 0932.20007, MR 1645304
Reference: [5] Isaacs, I. M.: Character degree graphs and normal subgroups.Trans. Am. Math. Soc. 356 (2004), 1155-1183. Zbl 1034.20009, MR 2021616, 10.1090/S0002-9947-03-03462-7
Reference: [6] Isaacs, I. M.: Character Theory of Finite Groups.Pure and Applied Mathematics 69 Academic Press, New York (1976). Zbl 0337.20005, MR 0460423
Reference: [7] Khosravi, B.: Groups with the same orders and large character degrees as $ PGL(2,9)$.Quasigroups Relat. Syst. 21 (2013), 239-243. Zbl 1294.20009, MR 3203150
Reference: [8] Khosravi, B., Khosravi, B., Khosravi, B.: Recognition of $ PSL(2, p)$ by order and some information on its character degrees where $p$ is a prime.Monatsh. Math. 175 (2014), 277-282. Zbl 1304.20042, MR 3260870, 10.1007/s00605-013-0582-2
Reference: [9] Kimmerle, W.: Group rings of finite simple groups.Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 261-278. Zbl 1047.20007, MR 2015338
Reference: [10] Lewis, M. L., White, D. L.: Nonsolvable groups with no prime dividing three character degrees.J. Algebra 336 (2011), 158-183. Zbl 1246.20006, MR 2802535, 10.1016/j.jalgebra.2011.03.028
Reference: [11] Nagl, M.: Charakterisierung der symmetrischen Gruppen durch ihre komplexe Gruppenalgebra.Stuttgarter Mathematische Berichte, http://www.mathematik.uni-stuttgart. de/preprints/downloads/2011/2011-007.pdf (2011), German.
Reference: [12] Nagl, M.: Über das Isomorphieproblem von Gruppenalgebren endlicher einfacher Gruppen.Diplomarbeit, Universität Stuttgart (2008), German.
Reference: [13] Tong-Viet, H. P.: Alternating and sporadic simple groups are determined by their character degrees.Algebr. Represent. Theory 15 (2012), 379-389. Zbl 1252.20005, MR 2892513, 10.1007/s10468-010-9247-1
Reference: [14] Tong-Viet, H. P.: Simple classical groups of Lie type are determined by their character degrees.J. Algebra 357 (2012), 61-68. Zbl 1259.20008, MR 2905242, 10.1016/j.jalgebra.2012.02.011
Reference: [15] Tong-Viet, H. P.: Simple exceptional groups of Lie type are determined by their character degrees.Monatsh. Math. 166 (2012), 559-577. Zbl 1255.20006, MR 2925155, 10.1007/s00605-011-0301-9
Reference: [16] Tong-Viet, H. P.: Symmetric groups are determined by their character degrees.J. Algebra 334 (2011), 275-284. Zbl 1246.20007, MR 2787664, 10.1016/j.jalgebra.2010.11.018
Reference: [17] White, D. L.: Degree graphs of simple groups.Rocky Mt. J. Math. 39 (2009), 1713-1739. Zbl 1180.20008, MR 2546661, 10.1216/RMJ-2009-39-5-1713
Reference: [18] Xu, H., Chen, G., Yan, Y.: A new characterization of simple $K_3$-groups by their orders and large degrees of their irreducible characters.Commun. Algebra 42 5374-5380 (2014). Zbl 1297.20012, MR 3223645, 10.1080/00927872.2013.842242
.

Files

Files Size Format View
CzechMathJ_65-2015-1_16.pdf 295.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo