Previous |  Up |  Next

Article

Title: Strongly fixed ideals in $ C (L)$ and compact frames (English)
Author: Estaji, A. A.
Author: Karimi Feizabadi, A.
Author: Abedi, M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 1
Year: 2015
Pages: 1-12
Summary lang: English
.
Category: math
.
Summary: Let $C(L)$ be the ring of real-valued continuous functions on a frame $L$. In this paper, strongly fixed ideals and characterization of maximal ideals of $C(L)$ which is used with strongly fixed are introduced. In the case of weakly spatial frames this characterization is equivalent to the compactness of frames. Besides, the relation of the two concepts, fixed and strongly fixed ideals of $C(L)$, is studied particularly in the case of weakly spatial frames. The concept of weakly spatiality is actually weaker than spatiality and they are equivalent in the case of conjunctive frames. Assuming Axiom of Choice, compact frames are weakly spatial. (English)
Keyword: frame
Keyword: ring of real-valued continuous functions
Keyword: weakly spatial frame
Keyword: fixed and strongly fixed ideal
MSC: 06D22
MSC: 13A15
MSC: 13C99
idZBL: Zbl 06487017
idMR: MR3338762
DOI: 10.5817/AM2015-1-1
.
Date available: 2015-04-01T12:48:52Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144228
.
Reference: [1] Banaschewski, B.: Prime elements from prime ideals.Order 2 (2) (1985), 211–213. Zbl 0576.06010, MR 0815866, 10.1007/BF00334858
Reference: [2] Banaschewski, B.: Pointfree topology and the spectra of f-rings.Ordered algebraic structures, (Curacoa, 1995), Kluwer Acad. Publ., Dordrecht, 1997, pp. 123–148. Zbl 0870.06017, MR 1445110
Reference: [3] Banaschewski, B.: The real numbers in pointfree topology.Textos de Mathemática (Série B), Vol. 12, University of Coimbra, Departmento de Mathemática, Coimbra, 1997. Zbl 0891.54009, MR 1621835
Reference: [4] Banaschewski, B., Gilmour, C.R.A.: Pseudocompactness and the cozero part of a frame.Comment. Math. Univ. Carolin. 37 (1996), 577–587. Zbl 0881.54018, MR 1426922
Reference: [5] Dube, T.: Some ring-theoretic properties of almost $P$-frames.Algebra Universalis 60 (2009), 145–162. Zbl 1186.06006, MR 2491419, 10.1007/s00012-009-2093-5
Reference: [6] Dube, T.: On the ideal of functions with compact support in pointfree function rings.Acta Math. Hungar. 129 (2010), 205–226. Zbl 1299.06021, MR 2737723, 10.1007/s10474-010-0024-8
Reference: [7] Dube, T.: A broader view of the almost Lindelf property.Algebra Universalis 65 (2011), 263–276. MR 2793399, 10.1007/s00012-011-0127-2
Reference: [8] Dube, T.: Real ideal in pointfree rings of continuous functions.Bull. Asut. Math. Soc. 83 (2011), 338–352. MR 2784791
Reference: [9] Dube, T.: Extending and contracting maximal ideals in the function rings of pointfree topology.Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (4) (2012), 365–374. Zbl 1274.06038, MR 2963403
Reference: [10] Ebrahimi, M.M., Karimi, A.: Pointfree prime representation of real Riesz maps.Algebra Universalis 2005 (54), 291–299. MR 2219412
Reference: [11] Estaji, A.A., Feizabadi, A. Karimi, Abedi, M.: Zero sets in pointfree topology and strongly $z$-ideals.accepted in Bulletin of the Iranian Mathematical Society.
Reference: [12] Garcáa, J. Gutiérrez, Picado, J.: How to deal with the ring of (continuous) real-valued functions in terms of scales.Proceedings of the Workshop in Applied Topology WiAT'10, 2010, pp. 19–30.
Reference: [13] Gillman, L., Jerison, M.: Rings of continuous functions.Springer Verlag, 1979. MR 0407579
Reference: [14] Johnstone, P.T.: Stone Spaces.Cambridge Univ. Press, 1982. Zbl 0499.54001, MR 0698074
Reference: [15] Paseka, J.: Conjunctivity in quantales.Arch. Math. (Brno) 24 (4) (1988), 173–179. Zbl 0663.06011, MR 0983235
Reference: [16] Paseka, J., Šmarda, B.: $T_2$-frames and almost compact frames.Czechoslovak Math. J. 42 (3) (1992), 385–402. MR 1179302
Reference: [17] Picado, J., Pultr, A.: Frames and Locales: topology without points.Frontiers in Mathematics, Springer, Basel, 2012. Zbl 1231.06018, MR 2868166
Reference: [18] Simmons, H.: The lattice theoretical part of topological separation properties.Proc. Edinburgh Math. Soc. (2) 21 (1978), 41–48. MR 0493959
.

Files

Files Size Format View
ArchMathRetro_051-2015-1_1.pdf 512.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo