Previous |  Up |  Next

Article

Title: On inverse categories with split idempotents (English)
Author: Schwab, Emil
Author: Schwab, Emil Daniel
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 1
Year: 2015
Pages: 13-25
Summary lang: English
.
Category: math
.
Summary: We present some special properties of inverse categories with split idempotents. First, we examine a Clifford-Leech type theorem relative to such inverse categories. The connection with right cancellative categories with pushouts is illustrated by simple examples. Finally, some basic properties of inverse categories with split idempotents and kernels are studied in terms of split idempotents which generate (right or left) principal ideals of annihilators. (English)
Keyword: inverse categories
Keyword: inverse monoids
Keyword: split idempotents
Keyword: pointed sets
Keyword: annihilators
Keyword: exact sequences
MSC: 18B40
MSC: 20M50
idZBL: Zbl 06487018
idMR: MR3338763
DOI: 10.5817/AM2015-1-13
.
Date available: 2015-04-01T12:49:51Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144231
.
Reference: [1] Clifford, A.H.: A class of d-simple semigroups.Amer. J. Math. 75 (1953), 547–556. Zbl 0051.01302, MR 0056597, 10.2307/2372503
Reference: [2] Jones, D.G., Lawson, M.V.: Graph inverse semigroups: their characterization and completion.J. Algebra 409 (2014), 444–473. MR 3198850, 10.1016/j.jalgebra.2014.04.001
Reference: [3] Kastl, J.: Inverse categories.Studien zur Algebra und ihre Anwendungen, Akademie-Verlag Berlin, 1979, BAnd 7, pp. 51–60. Zbl 0427.18003, MR 0569574
Reference: [4] Kawahara, Y.: Relations in categories with pullbacks.Mem. Kyushu University, Series A, Math. 27 (1973), 149–173. Zbl 0261.18005, MR 0390017, 10.2206/kyushumfs.27.149
Reference: [5] Leech, J.: Constructing inverse monoids from small categories.Semigroup Forum 36 (1987), 89–116. Zbl 0634.18002, MR 0902733, 10.1007/BF02575008
Reference: [6] Mitchell, B.: Theory of categories.Acad. Press New York, 1965. Zbl 0136.00604, MR 0202787
Reference: [7] Schwab, E.: Image and inverse image mappings in exact inverse categories.Boll. U.M.I. 18–B (1981), 831–845. Zbl 0477.18002, MR 0641740
Reference: [8] Schwab, E., Schwab, E.D.: Quantum logic, dagger kernel categories and inverse Baer*-categories.Order 296 (2012), 405–417. MR 2979640, 10.1007/s11083-011-9211-7
Reference: [9] Schwab, E.D., Stoianov, G.: A Dirichlet analogue of the free monogenic inverse semigroup via Möbius inversion.Rocky Mountain J. Math 41 (2011), 1701–1710. Zbl 1233.20055, MR 2838084, 10.1216/RMJ-2011-41-5-1701
.

Files

Files Size Format View
ArchMathRetro_051-2015-1_2.pdf 504.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo