Previous |  Up |  Next

Article

Title: On some free semigroups, generated by matrices (English)
Author: Słanina, Piotr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 289-299
Summary lang: English
.
Category: math
.
Summary: Let $$ A=\left [ \begin {matrix} 1 & 2 \\ 0 & 1 \end {matrix} \right ],\quad B_{\lambda }=\left [ \begin {matrix} 1 & 0 \\ \lambda & 1 \end {matrix} \right ]. $$ We call a complex number $\lambda $ “semigroup free“ if the semigroup generated by $A$ and $B_{\lambda }$ is free and “free” if the group generated by $A$ and $B_{\lambda }$ is free. First families of semigroup free $\lambda $'s were described by J. L. Brenner, A. Charnow (1978). In this paper we enlarge the set of known semigroup free $\lambda $'s. To do it, we use a new version of “Ping-Pong Lemma” for semigroups embeddable in groups. At the end we present most of the known results related to semigroup free and free numbers in a common picture. (English)
Keyword: free semigroup
Keyword: semigroup of matrices
MSC: 15A30
MSC: 20E05
MSC: 20M05
idZBL: Zbl 06486946
idMR: MR3360426
DOI: 10.1007/s10587-015-0175-4
.
Date available: 2015-06-16T17:29:44Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144268
.
Reference: [1] Bamberg, J.: Non-free points for groups generated by a pair of {$2\times 2$} matrices.J. Lond. Math. Soc., II. Ser. 62 (2000), 795-801. Zbl 1019.20014, MR 1794285, 10.1112/S0024610700001630
Reference: [2] Brenner, J. L.: Quelques groupes libres de matrices.C. R. Acad. Sci., Paris 241 French (1955), 1689-1691. Zbl 0065.25402, MR 0075952
Reference: [3] Brenner, J. L., Charnow, A.: Free semigroups of {$2\times 2$} matrices.Pac. J. Math. 77 (1978), 57-69. Zbl 0382.20044, MR 0507620, 10.2140/pjm.1978.77.57
Reference: [4] Chang, B., Jennings, S. A., Ree, R.: On certain pairs of matrices which generate free groups.Can. J. Math. 10 (1958), 279-284. Zbl 0081.25902, MR 0094388, 10.4153/CJM-1958-029-2
Reference: [5] Harpe, P. de la: Topics in Geometric Group Theory.Chicago Lectures in Mathematics The University of Chicago Press, Chicago (2000). Zbl 0965.20025, MR 1786869
Reference: [6] Fuchs-Rabinowitsch, D. J.: On a certain representation of a free group.Leningrad State Univ. Annals Math. Ser. 10 Russian (1940), 154-157. MR 0003414
Reference: [7] Ignatov, J. A.: Free and nonfree subgroups of $ PSL_{2}(\mathbb{C})$ that are generated by two parabolic elements.Mat. Sb., Nov. Ser. 106 Russian (1978), 372-379. MR 0505107
Reference: [8] Ignatov, Y. A., Evtikhova, A. V.: Free groups of linear-fractional transformations.Chebyshevskiĭ Sb. 3 Russian (2002), 78-81. Zbl 1112.20045, MR 2023624
Reference: [9] Ignatov, Y. A., Gruzdeva, T. N., Sviridova, I. A.: Free groups of linear-fractional transformations.Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform. 5 (1999), 116-120. MR 1749349
Reference: [10] Keen, L., Series, C.: The Riley slice of Schottky space.Proc. Lond. Math. Soc. (3) 69 (1994), 72-90. Zbl 0807.30031, MR 1272421
Reference: [11] Lyndon, R. C., Ullman, J. L.: Groups generated by two parabolic linear fractional transformations.Can. J. Math. 21 (1969), 1388-1403. Zbl 0191.01904, MR 0258975, 10.4153/CJM-1969-153-1
Reference: [12] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80 Springer, New York (1996). MR 1357169
Reference: [13] Saks, S., Zygmund, A.: Analytic Functions.PWN-Polish Scientific Publishers Warsaw (1965). Zbl 0136.37301, MR 0180658
Reference: [14] Sanov, I. N.: A property of a representation of a free group.Dokl. Akad. Nauk SSSR, N. Ser. 57 Russian (1947), 657-659. MR 0022557
Reference: [15] Słanina, P.: On some free groups, generated by matrices.Demonstr. Math. (electronic only) 37 (2004), 55-61. Zbl 1050.20016, MR 2053102
.

Files

Files Size Format View
CzechMathJ_65-2015-2_1.pdf 327.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo