Previous |  Up |  Next

Article

Title: Oscillation of third order differential equation with damping term (English)
Author: Bartušek, Miroslav
Author: Došlá, Zuzana
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 301-316
Summary lang: English
.
Category: math
.
Summary: We study asymptotic and oscillatory properties of solutions to the third order differential equation with a damping term $$ x'''(t)+q(t)x'(t)+r(t)|x|^{\lambda }(t)\mathop {\rm sgn} x(t)=0 ,\quad t\geq 0. $$ We give conditions under which every solution of the equation above is either oscillatory or tends to zero. In case $\lambda \leq 1$ and if the corresponding second order differential equation $h''+q(t)h=0$ is oscillatory, we also study Kneser solutions vanishing at infinity and the existence of oscillatory solutions. (English)
Keyword: third order nonlinear differential equation
Keyword: vanishing at infinity solution
Keyword: Kneser solution
Keyword: oscillatory solution
MSC: 34C10
MSC: 34C15
idZBL: Zbl 06486947
idMR: MR3360427
DOI: 10.1007/s10587-015-0176-3
.
Date available: 2015-06-16T17:31:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144270
.
Reference: [1] Agarwal, R. P., Baculíková, B., Džurina, J., Li, T.: Oscillation of third-order nonlinear differential equations with mixed arguments.Acta Math. Hung. 134 (2012), 54-67. MR 2863808, 10.1007/s10474-011-0120-4
Reference: [2] Agarwal, R. P., O'Regan, D.: Infinite Interval Problems for Differential, Difference and Integral Equations.Kluwer Academic Publishers Dordrecht (2001). Zbl 0988.34002, MR 1845855
Reference: [3] Astashova, I.: On the asymptotic behavior at infinity of solutions to quasi-linear differential equations.Math. Bohem. 135 (2010), 373-382. Zbl 1224.34098, MR 2681011
Reference: [4] Astashova, I. V.: Uniform estimates for positive solutions of quasi-linear ordinary differential equations.Russian Izv. Ross. Akad. Nauk, Ser. Mat. 72 (2008), 85-104 translation in Izv. Math. 72 (2008), 1141-1160. Zbl 1167.34010, MR 2489485
Reference: [5] Baculíková, B., Džurina, J., Rogovchenko, Y. V.: Oscillation of third order trinomial delay differential equations.Appl. Math. Comput. 218 (2012), 7023-7033. Zbl 1252.34074, MR 2880290, 10.1016/j.amc.2011.12.049
Reference: [6] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: Asymptotics for higher order differential equations with a middle term.J. Math. Anal. Appl. 388 (2012), 1130-1140. Zbl 1232.34051, MR 2869812, 10.1016/j.jmaa.2011.10.059
Reference: [7] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: Oscillation for third-order nonlinear differential equations with deviating argument.Abstr. Appl. Anal. 2010 (2010), Article ID 278962, 19 pages. Zbl 1192.34073, MR 2587610
Reference: [8] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of third order nonlinear differential equations.Dyn. Syst. Appl. 9 (2000), 483-499. MR 1843694
Reference: [9] Bartušek, M., Cecchi, M., Marini, M.: On Kneser solutions of nonlinear third order differential equations.J. Math. Anal. Appl. 261 (2001), 72-84. MR 1850957, 10.1006/jmaa.2000.7473
Reference: [10] Cecchi, M., Došlá, Z., Marini, M.: On third order differential equations with property A and B.J. Math. Anal. Appl. 231 (1999), 509-525. MR 1669163, 10.1006/jmaa.1998.6247
Reference: [11] Cecchi, M., Došlá, Z., Marini, M.: Some properties of third order differential operators.Czech. Math. J. 47 (1997), 729-748. Zbl 0903.34032, MR 1479316, 10.1023/A:1022878804065
Reference: [12] Elias, U.: Oscillation Theory of Two-Term Differential Equations.Mathematics and Its Applications 396 Kluwer Academic Publishers, Dordrecht (1997). Zbl 0878.34022, MR 1445292
Reference: [13] Greguš, M.: Third Order Linear Differential Equations.Mathematics and Its Applications (East European Series) 22 Reidel Publishing Company, Dordrecht (1987). MR 0882545
Reference: [14] Kiguradze, I. T.: An oscillation criterion for a class of ordinary differential equations.Differ. Uravn. 28 (1992), 207-219 Russian translation in Differ. Equ. 28 (1992), 180-190. Zbl 0768.34018, MR 1184921
Reference: [15] Kiguradze, I. T., Chanturiya, T. A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Mathematics and Its Applications. Soviet Series 89 Kluwer Academic Publishers, Dordrecht (1993). Zbl 0782.34002, MR 1220223
Reference: [16] Kusano, T., Švec, M.: On unbounded positive solutions of nonlinear differential equations with oscillating coefficients.Czech. Math. J. 39 (1989), 133-141. Zbl 0685.34011, MR 0983490
Reference: [17] Ohriska, J.: Oscillatory and asymptotic properties of third and fourth order linear differential equations.Czech. Math. J. 39 (1989), 215-224. Zbl 0688.34018, MR 0992128
Reference: [18] Padhi, S., Pati, S.: Theory of Third-Order Differential Equations.Springer New Delhi (2014). Zbl 1308.34002, MR 3136420
Reference: [19] Švec, M.: Behavior of nonoscillatory solutions of some nonlinear differential equations.Acta Math. Univ. Comenianae 39 (1980), 115-130. Zbl 0525.34029, MR 0619268
Reference: [20] Švec, M.: Sur une propriété intégrales de l'équation $y^{(n)}+Q(x)y=0$, $n=3,4$.Czech. Math. J. 7 (1957), 450-462 French. MR 0095313
Reference: [21] Tiryaki, A., Aktaş, M. F.: Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping.J. Math. Anal. Appl. 325 (2007), 54-68. Zbl 1110.34048, MR 2273028, 10.1016/j.jmaa.2006.01.001
Reference: [22] Villari, G.: Contributi allo studio asintotico dell'equazione $x'''(t)+p(t)x(t)=0$.Italian Ann. Mat. Pura Appl., IV. Ser. 51 (1960), 301-328. Zbl 0095.06903, MR 0121528
.

Files

Files Size Format View
CzechMathJ_65-2015-2_2.pdf 286.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo