Previous |  Up |  Next

Article

Title: Concentration-Compactness Principle for embedding into multiple exponential spaces on unbounded domains (English)
Author: Černý, Robert
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 493-516
Summary lang: English
.
Category: math
.
Summary: Let $\Omega \subset \mathbb R^n$ be a domain and let $\alpha <n-1$. We prove the Concentration-Compactness Principle for the embedding of the space $W_0^1L^n\log ^{\alpha }L(\Omega )$ into an Orlicz space corresponding to a Young function which behaves like $\exp (t^{{n}/{(n-1-\alpha )}})$ for large $t$. We also give the result for the embedding into multiple exponential spaces. \endgraf Our main result is Theorem \ref {lions4} where we show that if one passes to unbounded domains, then, after the usual modification of the integrand in the Moser functional, the statement of the Concentration-Compactnes Principle is very similar to the statement in the case of a bounded domain. In particular, in the case of a nontrivial weak limit the borderline exponent is still given by the formula $$ P:=(1-\|\Phi (|\nabla u|)\|_{L^1(\mathbb R^n)})^{-{1}/{(n-1)}}. $$ (English)
Keyword: Sobolev space
Keyword: Orlicz-Sobolev space
Keyword: Moser-Trudinger inequality
Keyword: sharp constant
Keyword: concentration-compactness principle
MSC: 26D10
MSC: 46E30
MSC: 46E35
idZBL: Zbl 06486960
idMR: MR3360440
DOI: 10.1007/s10587-015-0189-y
.
Date available: 2015-06-16T18:01:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144283
.
Reference: [1] Adachi, S., Tanaka, K.: Trudinger type inequalities in $\mathbb R^N$ and their best exponents.Proc. Am. Math. Soc. 128 2051-2057 (2000). MR 1646323, 10.1090/S0002-9939-99-05180-1
Reference: [2] Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the $n$-Laplacian.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 17 393-413 (1990). Zbl 0732.35028, MR 1079983
Reference: [3] Battaglia, L., Mancini, G.: Remarks on the Moser-Trudinger inequality.Adv. Nonlinear Anal. 2 389-425 (2013). Zbl 1290.46025, MR 3199739
Reference: [4] Carleson, L., Chang, S.-Y. A.: On the existence of an extremal function for an inequality of J. Moser.Bull. Sci. Math., II. Sér. 110 113-127 (1986), French summary. MR 0878016
Reference: [5] Černý, R.: Concentration-compactness principle for embedding into multiple exponential spaces.Math. Inequal. Appl. 15 165-198 (2012). Zbl 1236.46027, MR 2919441
Reference: [6] Černý, R.: Generalized Moser-Trudinger inequality for unbounded domains and its application.NoDEA, Nonlinear Differ. Equ. Appl. 19 575-608 (2012). Zbl 1262.46025, MR 2984597, 10.1007/s00030-011-0143-0
Reference: [7] Černý, R.: Note on the Concentration-compactness principle for generalized Moser-Trudinger inequalities.Cent. Eur. J. Math. 10 590-602 (2012). Zbl 1272.46019, MR 2893423, 10.2478/s11533-011-0102-3
Reference: [8] Černý, R., Cianchi, A., Hencl, S.: Concentration-compactness principle for Moser-Trudinger inequalities: new results and proofs.Ann. Mat. Pura Appl. (4) 192 225-243 (2013). MR 3035137, 10.1007/s10231-011-0220-3
Reference: [9] Černý, R., Gurka, P., Hencl, S.: Concentration-compactness principle for generalized Trudinger inequalities.Z. Anal. Anwend. 30 355-375 (2011). Zbl 1225.46026, MR 2819500, 10.4171/ZAA/1439
Reference: [10] Černý, R., Gurka, P., Hencl, S.: On the Dirichlet problem for the $n,\alpha$-Laplacian with the nonlinearity in the critical growth range.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 5189-5204 (2011). Zbl 1225.35062, MR 2810699, 10.1016/j.na.2011.05.015
Reference: [11] Černý, R., Mašková, S.: A sharp form of an embedding into multiple exponential spaces.Czech. Math. J. 60 751-782 (2010). Zbl 1224.46064, MR 2672414, 10.1007/s10587-010-0048-9
Reference: [12] Chabrowski, J.: Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents.Calc. Var. Partial Differ. Equ. 3 493-512 (1995). Zbl 0838.35035, MR 1385297, 10.1007/BF01187898
Reference: [13] Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces.Indiana Univ. Math. J. 45 39-65 (1996). Zbl 0860.46022, MR 1406683, 10.1512/iumj.1996.45.1958
Reference: [14] Figueiredo, D. G. de, Miyagaki, O. H., Ruf, B.: Elliptic equations in $\mathbb R^2$ with nonlinearities in the critical growt hrange.Calc. Var. Partial Differ. Equ. 3 139-153 (1995). MR 1386960, 10.1007/BF01205003
Reference: [15] 'O, J. M. do: $N$-Laplacian equations in $\mathbb R^N$ with critical growth.Abstr. Appl. Anal. 2 301-315 (1997). MR 1704875, 10.1155/S1085337597000419
Reference: [16] Ó, J. M. do, Souza, M. de, Medeiros, E. de, Severo, U.: An improvement for the Trudinger-Moser inequality and applications.J. Differ. Equations 256 1317-1349 (2014). MR 3145759, 10.1016/j.jde.2013.10.016
Reference: [17] Ó, J. M. do, Medeiros, E., Severo, U.: On a quasilinear nonhomogenous elliptic equation with critical growth in $\mathbb R^N$.J. Differ. Equations 246 1363-1386 (2009). MR 2488689, 10.1016/j.jde.2008.11.020
Reference: [18] Edmunds, D. E., Gurka, P., Opic, B.: Norms of embeddings of logarithmic Bessel potential spaces.Proc. Am. Math. Soc. 126 2417-2425 (1998). Zbl 0895.46020, MR 1451796, 10.1090/S0002-9939-98-04327-5
Reference: [19] Edmunds, D. E., Gurka, P., Opic, B.: On embeddings of logarithmic Bessel potential spaces.J. Funct. Anal. 146 116-150 (1997). Zbl 0934.46036, MR 1446377, 10.1006/jfan.1996.3037
Reference: [20] Edmunds, D. E., Gurka, P., Opic, B.: Sharpness of embeddings in logarithmic Bessel-potential spaces.Proc. R. Soc. Edinb., Sect. A 126 995-1009 (1996). Zbl 0860.46024, MR 1415818, 10.1017/S0308210500023210
Reference: [21] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability, Bessel potentials and embedding theorems.Stud. Math. 115 151-181 (1995). Zbl 0829.47024, MR 1347439
Reference: [22] Edmunds, D. E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces.Indiana Univ. Math. J. 44 19-43 (1995). Zbl 0826.47021, MR 1336431, 10.1512/iumj.1995.44.1977
Reference: [23] Edmunds, D. E., Krbec, M.: Two limiting cases of Sobolev imbeddings.Houston J. Math. 21 119-128 (1995). Zbl 0835.46027, MR 1331250
Reference: [24] Fusco, N., Lions, P.-L., Sbordone, C.: Sobolev imbedding theorems in borderline cases.Proc. Am. Math. Soc. 124 561-565 (1996). Zbl 0841.46023, MR 1301025, 10.1090/S0002-9939-96-03136-X
Reference: [25] Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces.J. Funct. Anal. 204 (2003), 196-227. Zbl 1034.46031, MR 2004749, 10.1016/S0022-1236(02)00172-6
Reference: [26] Li, Y., Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb R^n$.Indiana Univ. Math. J. 57 451-480 (2008). MR 2400264, 10.1512/iumj.2008.57.3137
Reference: [27] Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I.Rev. Mat. Iberoam. 1 (1985), 145-201. Zbl 0704.49005, MR 0834360, 10.4171/RMI/6
Reference: [28] Moser, J.: A sharp form of an inequality by Trudinger.Indiana Univ. Math. J. 20 1077-1092 (1971). Zbl 0213.13001, MR 0301504, 10.1512/iumj.1971.20.20101
Reference: [29] Opic, B., Pick, L.: On generalized Lorentz-Zygmund spaces.Math. Inequal. Appl. 2 391-467 (1999). Zbl 0956.46020, MR 1698383
Reference: [30] Rao, M. M., Ren, Z. D.: Theory of Orlicz Spaces.Pure and Applied Mathematics 146 Marcel Dekker, New York (1991). Zbl 0724.46032, MR 1113700
Reference: [31] Ruf, B.: A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb R^2$.J. Funct. Anal. 219 340-367 (2005). MR 2109256, 10.1016/j.jfa.2004.06.013
Reference: [32] Talenti, G.: Inequalities in rearrangement invariant function spaces.Nonlinear Analysis, Function Spaces and Applications. Vol. 5 M. Krbec et al. Proc. Conf., Praha, 1994. Prometheus Publishing House Praha (1994), 177-230. Zbl 0872.46020, MR 1322313
Reference: [33] Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications.J. Math. Mech. 17 473-484 (1967). Zbl 0163.36402, MR 0216286
.

Files

Files Size Format View
CzechMathJ_65-2015-2_15.pdf 349.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo