Previous |  Up |  Next

Article

Title: Fiber product preserving bundle functors as modified vertical Weil functors (English)
Author: Mikulski, Włodzimierz M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 517-528
Summary lang: English
.
Category: math
.
Summary: We introduce the concept of modified vertical Weil functors on the category $\mathcal {F}\mathcal {M}_m$ of fibred manifolds with $m$-dimensional bases and their fibred maps with embeddings as base maps. Then we describe all fiber product preserving bundle functors on $\mathcal {F}\mathcal {M}_m$ in terms of modified vertical Weil functors. The construction of modified vertical Weil functors is an (almost direct) generalization of the usual vertical Weil functor. Namely, in the construction of the usual vertical Weil functors, we replace the usual Weil functors $T^A$ corresponding to Weil algebras $A$ by the so called modified Weil functors $T^A$ corresponding to Weil algebra bundle functors $A$ on the category $\mathcal {M}_m$ of $m$-dimensional manifolds and their embeddings. (English)
Keyword: Weil algebra
Keyword: Weil functor
Keyword: vertical Weil functor
Keyword: Weil algebra bundle functor
Keyword: modified Weil functor
Keyword: modified vertical Weil functor
Keyword: bundle functor
Keyword: fiber product preserving bundle functor
Keyword: natural transformation
MSC: 58A05
MSC: 58A20
MSC: 58A32
idZBL: Zbl 06486961
idMR: MR3360441
DOI: 10.1007/s10587-015-0190-5
.
Date available: 2015-06-16T18:02:23Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144284
.
Reference: [1] Doupovec, M., Kolář, I.: Iteration of fiber product preserving bundle functors.Monatsh. Math. 134 (2001), 39-50. MR 1872045, 10.1007/s006050170010
Reference: [2] Eck, D. J.: Product-preserving functors on smooth manifolds.J. Pure Appl. Algebra 42 (1986), 133-140. Zbl 0615.57019, MR 0857563, 10.1016/0022-4049(86)90076-9
Reference: [3] Kainz, G., Michor, P. W.: Natural transformations in differential geometry.Czech. Math. J. 37 (1987), 584-607. Zbl 0654.58001, MR 0913992
Reference: [4] Kolář, I.: Weil bundles as generalized jet spaces.Handbook of Global Analysis Elsevier Amsterdam (2008), 625-664 D. Krupka et al. MR 2389643
Reference: [5] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer Berlin (1993). MR 1202431
Reference: [6] Kolář, I., Mikulski, W. M.: On the fiber product preserving bundle functors.Differ. Geom. Appl. 11 (1999), 105-115. MR 1712139, 10.1016/S0926-2245(99)00022-4
Reference: [7] Kurek, J., Mikulski, W. M.: Fiber product preserving bundle functors of vertical type.Differential Geom. Appl. 35 (2014), 150-155. MR 3254299, 10.1016/j.difgeo.2014.04.005
Reference: [8] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points.Nagoya Math. J. 109 (1988), 69-89. Zbl 0661.58007, MR 0931952, 10.1017/S0027763000002774
Reference: [9] Weil, A.: Théorie des points proches sur les variétés différentiables.Géométrie différentielle Colloques Internat. Centre Nat. Rech. Sci. 52 Paris French (1953), 111-117. Zbl 0053.24903, MR 0061455
.

Files

Files Size Format View
CzechMathJ_65-2015-2_16.pdf 271.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo