Previous |  Up |  Next

Article

Title: On the distribution of consecutive square-free primitive roots modulo $p$ (English)
Author: Liu, Huaning
Author: Dong, Hui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 2
Year: 2015
Pages: 555-564
Summary lang: English
.
Category: math
.
Summary: A positive integer $n$ is called a square-free number if it is not divisible by a perfect square except $1$. Let $p$ be an odd prime. For $n$ with $(n,p)=1$, the smallest positive integer $f$ such that $n^f \equiv 1 \pmod p$ is called the exponent of $n$ modulo $p$. If the exponent of $n$ modulo $p$ is $p-1$, then $n$ is called a primitive root mod $p$. \endgraf Let $A(n)$ be the characteristic function of the square-free primitive roots modulo $p$. In this paper we study the distribution $$ \sum _{n\leq x}A(n)A(n+1), $$ and give an asymptotic formula by using properties of character sums. (English)
Keyword: square-free
Keyword: primitive root
Keyword: square sieve
Keyword: character sum
MSC: 11B50
MSC: 11L40
MSC: 11N25
idZBL: Zbl 06486965
idMR: MR3360445
DOI: 10.1007/s10587-015-0194-1
.
Date available: 2015-06-16T18:06:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144288
.
Reference: [1] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers.Math. Ann. 266 (1984), 251-259. Zbl 0514.10038, MR 0730168, 10.1007/BF01475576
Reference: [2] Liu, H., Zhang, W.: On the squarefree and squarefull numbers.J. Math. Kyoto Univ. 45 (2005), 247-255. Zbl 1089.11052, MR 2161690, 10.1215/kjm/1250281988
Reference: [3] Mirsky, L.: On the frequency of pairs of square-free numbers with a given difference.Bull. Amer. Math. Soc. 55 (1949), 936-939. Zbl 0035.31301, MR 0031507, 10.1090/S0002-9904-1949-09313-8
Reference: [4] Munsch, M.: Character sums over squarefree and squarefull numbers.Arch. Math. (Basel) 102 (2014), 555-563. Zbl 1297.11097, MR 3227477, 10.1007/s00013-014-0658-9
Reference: [5] Pappalardi, F.: A survey on $k$-freeness.Number Theory S. D. Adhikari et al. Conf. Proc. Chennai, India, 2002 Ramanujan Mathematical Society, Ramanujan Math. Soc. Lect. Notes Ser. 1, Mysore (2005), 71-88. Zbl 1156.11338, MR 2131677
Reference: [6] Rivat, J., Sárközy, A.: Modular constructions of pseudorandom binary sequences with composite moduli.Period. Math. Hung. 51 (2005), 75-107. Zbl 1111.11041, MR 2194941, 10.1007/s10998-005-0031-7
Reference: [7] Shapiro, H. N.: Introduction to the Theory of Numbers.Pure and Applied Mathematics. Wiley-Interscience Publication John Wiley & Sons. 12, New York (1983). Zbl 0515.10001, MR 0693458
.

Files

Files Size Format View
CzechMathJ_65-2015-2_20.pdf 237.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo