Previous |  Up |  Next

Article

Title: Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium (English)
Author: Martins, Rogério
Author: Morais, Gonçalo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 2
Year: 2015
Pages: 347-373
Summary lang: English
.
Category: math
.
Summary: An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented with a numerical study. (English)
Keyword: coupled oscillators
Keyword: synchronization
Keyword: invariant manifolds
MSC: 34C15
MSC: 34D06
MSC: 34D35
idZBL: Zbl 06487084
idMR: MR3350567
DOI: 10.14736/kyb-2015-2-0347
.
Date available: 2015-06-19T15:27:40Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144303
.
Reference: [1] Hartshorne, R.: Algebraic Geometry..Graduate Texts in Mathematics, Springer, 1977. Zbl 1306.00013, MR 0463157, 10.1007/978-1-4757-3849-0
Reference: [2] Hatcher, A.: Algebraic Topology..Cambridge University Press, 2002. Zbl 1044.55001, MR 1867354, 10.1017/s0013091503214620
Reference: [3] Horn, R., Johnson, C.: Topics in Matrix Analysis..Cambridge University Press, 1990. Zbl 0801.15001, MR 1288752, 10.1017/cbo9780511840371
Reference: [4] Katriel, G.: Synchronization of oscillators coupled through an environment..Physica D 237 (2008), 2933-2944. Zbl 1184.34060, MR 2514073, 10.1016/j.physd.2008.04.015
Reference: [5] Margheri, A., Martins, R.: Generalized synchronization in linearly coupled time periodic systems..J. Differential Equations 249 (2010), 3215-3232. MR 2737427, 10.1016/j.jde.2010.09.005
Reference: [6] Morais, G.: Dinâmica de Osciladores Acoplados..PhD Thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2013.
Reference: [7] Pantaleone, J.: Synchronization of metronomes..Am. J. Phys. 70 (2002), 992-1000. 10.1119/1.1501118
Reference: [8] Smith, R. A.: Poincaré index theorem concerning periodic orbits of differential equations..Proc. London Math. Soc. s3-48 (1984), 2, 341-362. Zbl 0509.34046, MR 0729074, 10.1112/plms/s3-48.2.341
Reference: [9] Smith, R. A.: Massera's convergence theorem for periodic nonlinear differential equations..J. Math. Anal. Appl 120 (1986), 679-708. Zbl 0603.34033, MR 0864784, 10.1016/0022-247x(86)90189-7
Reference: [10] Wazewski, T.: Sur un principle topologique de l'examen de l'allure asymptotique des integrales des Equations differentielles ordinaires..Ann. Soc. Polon Math. 20 (1947), 279-313. MR 0026206
.

Files

Files Size Format View
Kybernetika_51-2015-2_12.pdf 937.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo