Title:
|
Generalized synchronization in a system of several non-autonomous oscillators coupled by a medium (English) |
Author:
|
Martins, Rogério |
Author:
|
Morais, Gonçalo |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
51 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
347-373 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An abstract theory on general synchronization of a system of several oscillators coupled by a medium is given. By generalized synchronization we mean the existence of an invariant manifold that allows a reduction in dimension. The case of a concrete system modeling the dynamics of a chemical solution on two containers connected to a third container is studied from the basics to arbitrary perturbations. Conditions under which synchronization occurs are given. Our theoretical results are complemented with a numerical study. (English) |
Keyword:
|
coupled oscillators |
Keyword:
|
synchronization |
Keyword:
|
invariant manifolds |
MSC:
|
34C15 |
MSC:
|
34D06 |
MSC:
|
34D35 |
idZBL:
|
Zbl 06487084 |
idMR:
|
MR3350567 |
DOI:
|
10.14736/kyb-2015-2-0347 |
. |
Date available:
|
2015-06-19T15:27:40Z |
Last updated:
|
2016-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144303 |
. |
Reference:
|
[1] Hartshorne, R.: Algebraic Geometry..Graduate Texts in Mathematics, Springer, 1977. Zbl 1306.00013, MR 0463157, 10.1007/978-1-4757-3849-0 |
Reference:
|
[2] Hatcher, A.: Algebraic Topology..Cambridge University Press, 2002. Zbl 1044.55001, MR 1867354, 10.1017/s0013091503214620 |
Reference:
|
[3] Horn, R., Johnson, C.: Topics in Matrix Analysis..Cambridge University Press, 1990. Zbl 0801.15001, MR 1288752, 10.1017/cbo9780511840371 |
Reference:
|
[4] Katriel, G.: Synchronization of oscillators coupled through an environment..Physica D 237 (2008), 2933-2944. Zbl 1184.34060, MR 2514073, 10.1016/j.physd.2008.04.015 |
Reference:
|
[5] Margheri, A., Martins, R.: Generalized synchronization in linearly coupled time periodic systems..J. Differential Equations 249 (2010), 3215-3232. MR 2737427, 10.1016/j.jde.2010.09.005 |
Reference:
|
[6] Morais, G.: Dinâmica de Osciladores Acoplados..PhD Thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2013. |
Reference:
|
[7] Pantaleone, J.: Synchronization of metronomes..Am. J. Phys. 70 (2002), 992-1000. 10.1119/1.1501118 |
Reference:
|
[8] Smith, R. A.: Poincaré index theorem concerning periodic orbits of differential equations..Proc. London Math. Soc. s3-48 (1984), 2, 341-362. Zbl 0509.34046, MR 0729074, 10.1112/plms/s3-48.2.341 |
Reference:
|
[9] Smith, R. A.: Massera's convergence theorem for periodic nonlinear differential equations..J. Math. Anal. Appl 120 (1986), 679-708. Zbl 0603.34033, MR 0864784, 10.1016/0022-247x(86)90189-7 |
Reference:
|
[10] Wazewski, T.: Sur un principle topologique de l'examen de l'allure asymptotique des integrales des Equations differentielles ordinaires..Ann. Soc. Polon Math. 20 (1947), 279-313. MR 0026206 |
. |