Title:
|
Hardy-Rogers-type fixed point theorems for $\alpha $-$GF$-contractions (English) |
Author:
|
Arshad, Muhammad |
Author:
|
Ameer, Eskandar |
Author:
|
Hussain, Aftab |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
51 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
129-141 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of this paper is to introduce some new fixed point results of Hardy-Rogers-type for $\alpha $-$\eta $-$GF$-contraction in a complete metric space. We extend the concept of $F$-contraction into an $\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type. An example has been constructed to demonstrate the novelty of our results. (English) |
Keyword:
|
metric space |
Keyword:
|
fixed point |
Keyword:
|
$F$-contraction |
Keyword:
|
$\alpha $-$\eta $-$GF$-contraction of Hardy-Rogers-type |
MSC:
|
46S40 |
MSC:
|
47H10 |
MSC:
|
54H25 |
idZBL:
|
Zbl 06487025 |
idMR:
|
MR3397266 |
DOI:
|
10.5817/AM2015-3-129 |
. |
Date available:
|
2015-09-09T09:42:30Z |
Last updated:
|
2016-04-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144423 |
. |
Reference:
|
[1] Abdeljawad, T.: Meir-Keeler $\alpha $-contractive fixed and common fixed point theorems.Fixed Point Theory Appl. (2013). DOI: http://dx.doi.org/10.1186/1687-1812-2013-19 Zbl 1295.54038, MR 3022841, 10.1186/1687-1812-2013-19 |
Reference:
|
[2] Arshad, M., Fahimuddin, , Shoaib, A., Hussain, A.: Fixed point results for $\alpha $-$\psi $-locally graphic contraction in dislocated quasi metric spaces.Mathematical Sciences (2014), 7 pp. DOI: http://dx.doi.org/10.1007/s40096-014-0132 10.1007/s40096-014-0132 |
Reference:
|
[3] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales.Fund. Math. 3 (1922), 133–181. |
Reference:
|
[4] Ćirić, L.B.: A generalization of Banach’s contraction principle.Proc. Amer. Math. Soc. 45 (1974), 267–273. Zbl 0291.54056, MR 0356011, 10.2307/2040075 |
Reference:
|
[5] Cosentino, M., Vetro, P.: Fixed point results for $F$-contractive mappings of Hardy-Rogers-type.Filomat 28 (4) (2014), 715–722. DOI: http://dx.doi.org/10.2298/FIL 1404715C MR 3360064, 10.2298/FIL1404715C |
Reference:
|
[6] Edelstein, M.: On fixed and periodic points under contractive mappings.J. Lond. Math. Soc. 37 (1962), 74–79. Zbl 0113.16503, MR 0133102, 10.1112/jlms/s1-37.1.74 |
Reference:
|
[7] Fisher, B.: Set-valued mappings on metric spaces.Fund. Math. 112 (2) (1981), 141–145. Zbl 0479.54026, MR 0619490 |
Reference:
|
[8] Geraghty, M.: On contractive mappings.Proc. Amer. Math. Soc. 40 (1973), 604–608. Zbl 0245.54027, MR 0334176, 10.1090/S0002-9939-1973-0334176-5 |
Reference:
|
[9] Hussain, N., Al-Mezel, S., Salimi, P.: Fixed points for $\alpha $-$\psi $-graphic contractions with application to integral equations.Abstr. Appl. Anal. (2013), Article 575869. MR 3108673 |
Reference:
|
[10] Hussain, N., Arshad, M., Shoaib, A., Fahimuddin, : Common fixed point results for $\alpha $-$\psi $-contractions on a metric space endowed with graph.J. Inequal. Appl. 136 (2014). Zbl 1310.54050, MR 3284402 |
Reference:
|
[11] Hussain, N., Karapınar, E., Salimi, P., Akbar, F.: $\alpha $-admissible mappings and related fixed point theorems.J. Inequal. Appl. 114 (2013), 1–11. Zbl 1293.54023, MR 3047105 |
Reference:
|
[12] Hussain, N., Karapınar, E., Salimi, P., Vetro, P.: Fixed point results for $G^{m}$-Meir-Keeler contractive and $G$-$(\alpha ,\psi )$-Meir-Keeler contractive mappings.Fixed Point Theory Appl. 34 (2013). Zbl 1293.54024 |
Reference:
|
[13] Hussain, N., Kutbi, M.A., Salimi, P.: Fixed point theory in $\alpha $-complete metric spaces with applications.Abstr. Appl. Anal. (2014), 11pp., Article ID 280817. MR 3166589 |
Reference:
|
[14] Hussain, N., Salimi, P.: Suzuki-Wardowski type fixed point theorems for $\alpha $-$GF$-contractions.Taiwanese J. Math. 18 (6) (2014), 1879–1895. DOI: http://dx.doi.org/10.11650/tjm.18.2014.4462 MR 3284036, 10.11650/tjm.18.2014.4462 |
Reference:
|
[15] Hussain, N., Salimi, P., Latif, A.: Fixed point results for single and set-valued $\alpha $-$\eta $-$\psi $-contractive mappings.Fixed Point Theory Appl. 212 (2013). Zbl 1293.54025, MR 3103005 |
Reference:
|
[16] Karapınar, E., Samet, B.: Generalized $(\alpha -\psi )$ contractive type mappings and related fixed point theorems with applications.Abstr. Appl. Anal. (2012), Article ID 793486. Zbl 1252.54037, MR 2965472 |
Reference:
|
[17] Kutbi, M.A., Arshad, M., Hussain, A.: On modified $\alpha $-$\eta $-contractive mappings.Abstr. Appl. Anal. 2014 (2014), 7pp., Article ID 657858. MR 3246349 |
Reference:
|
[18] Nadler, S.B.: Multivalued contraction mappings.Pacific J. Math. 30 (1969), 475–488. MR 0254828, 10.2140/pjm.1969.30.475 |
Reference:
|
[19] Piri, H., Kumam, P.: Some fixed point theorems concerning $F$-contraction in complete metric spaces.Fixed Point Theory Appl. 210 (2014). MR 3357360 |
Reference:
|
[20] Salimi, P., Latif, A., Hussain, N.: Modified $\alpha $-$\psi $-contractive mappings with applications.Fixed Point Theory Appl. 151 (2013). Zbl 1293.54036, MR 3074018 |
Reference:
|
[21] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha $-$\psi $-contractive type mappings.Nonlinear Anal. 75 (2012), 2154–2165. Zbl 1242.54027, MR 2870907, 10.1016/j.na.2011.10.014 |
Reference:
|
[22] Secelean, N.A.: Iterated function systems consisting of $F$-contractions.Fixed Point Theory Appl. (2013), Article ID 277 (2013). DOI: http://dx.doi.org/10.1186/1687-1812-2013-277 MR 3213104, 10.1186/1687-1812-2013-277 |
Reference:
|
[23] Sgroi, M., Vetro, C.: Multi-valued $F$-contractions and the solution of certain functional and integral equations.Filomat 27 (7) (2013), 1259–1268. MR 3243997, 10.2298/FIL1307259S |
Reference:
|
[24] Wardowski, D.: Fixed point theory of a new type of contractive mappings in complete metric spaces.Fixed Point Theory Appl. (2012), Article ID 94 (2012). MR 2949666 |
. |