Previous |  Up |  Next

Article

Title: Some dynamic inequalities applicable to partial integrodifferential equations on time scales (English)
Author: Pachpatte, Deepak B.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 3
Year: 2015
Pages: 143-152
Summary lang: English
.
Category: math
.
Summary: The main objective of the paper is to study explicit bounds of certain dynamic integral inequalities on time scales. Using these inequalities we prove the uniqueness of some partial integrodifferential equations on time scales. (English)
Keyword: explicit bounds
Keyword: integral inequality
Keyword: dynamic equations
Keyword: time scales
MSC: 26E70
MSC: 34N05
idZBL: Zbl 06487026
idMR: MR3397267
DOI: 10.5817/AM2015-3-143
.
Date available: 2015-09-09T09:43:57Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144425
.
Reference: [1] Agarwal, R.P., O’Regan, D., Saker, S.H.: Dynamic inequalities on time scales.Springer, 2014. Zbl 1318.26002, MR 3307947
Reference: [2] Andras, S., Meszaros, A.: Wendroff type inequalities on time scales via Picard operators.Math. Inequal. Appl. 17 (1) (2013), 159–174. Zbl 1262.35006, MR 3060387
Reference: [3] Bohner, M., Peterson, A.: Dynamic equations on time scales.Birkhauser Boston–Berlin, 2001. Zbl 0993.39010, MR 1843232
Reference: [4] Bohner, M., Peterson, A.: Advances in dynamic equations on time scales.Birkhauser Boston–Berlin, 2003. Zbl 1025.34001, MR 1962542
Reference: [5] Hilger, S.: Analysis on measure chain – A unified approch to continuous and discrete calculus.Results Math. 18 (1990), 18–56. MR 1066641, 10.1007/BF03323153
Reference: [6] Menga, F., Shaoa, J.: Some new Volterra–Fredholm type dynamic integral inequalities on time scales.Appl. Math. Comput. 223 (2013), 444–451. MR 3116277, 10.1016/j.amc.2013.08.025
Reference: [7] Pachpatte, D.B.: Explicit estimates on integral inequalities with time scale.J. Inequal. Pure Appl. Math. 7 (4) (2006), Article 143. Zbl 1182.26068, MR 2268597
Reference: [8] Pachpatte, D.B.: Properties of solutions to nonlinear dynamic integral equations on time scales.Electron. J. Differential Equations 2008 (2008), no. 130, 1–8. Zbl 1165.39017, MR 2448891
Reference: [9] Pachpatte, D.B.: Integral inequalities for partial dynamic equations on time scales.Electron. J. Differential Equations 2012 (2012), no. 50, 1–7. Zbl 1238.26032, MR 2927786
Reference: [10] Pachpatte, D.B.: Properties of some partial dynamic equations on time scales.Internat. J. Partial Differential Equations 2013 (2013), 9pp., Art. ID 345697.
Reference: [11] Saker, S. H.: Some nonlinear dynamic inequalities on time scales and applications.J. Math. Inequalities 4 (2010), 561–579. Zbl 1207.26034, MR 2777272, 10.7153/jmi-04-50
Reference: [12] Saker, S.H.: Bounds of double integral dynamic inequalities in two independent variables on time scales.Discrete Dynamics in Nature and Society (2011), Art. 732164. Zbl 1238.26033, MR 2861953
Reference: [13] Saker, S.H.: Some nonlinear dynamic inequalities on time scales.Math. Inequal. Appl. 14 (2011), 633–645. Zbl 1222.26032, MR 2850178
Reference: [14] Sun, Y., Hassan, T.: Some nonlinear dynamic integral inequalities on time scales.Appl. Math. Comput. 220 (2013), 221–225. MR 3091847, 10.1016/j.amc.2013.06.036
.

Files

Files Size Format View
ArchMathRetro_051-2015-3_2.pdf 418.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo