Previous |  Up |  Next

Article

Title: Abelian analytic torsion and symplectic volume (English)
Author: McLellan, B.D.K.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 3
Year: 2015
Pages: 175-187
Summary lang: English
.
Category: math
.
Summary: This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data. (English)
Keyword: analytic torsion
Keyword: contact torsion
Keyword: Chern-Simons theory
Keyword: Sasakian three-manifold
Keyword: quantum field theory
MSC: 53C25
MSC: 53D10
MSC: 58J28
idZBL: Zbl 06487029
idMR: MR3397270
DOI: 10.5817/AM2015-3-175
.
Date available: 2015-09-09T09:49:02Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144428
.
Reference: [1] Atiyah, M.F., Patodi, V., Singer, I.: Spectral asymmetry and Riemannian geometry, I.Math. Proc. Cambridge Philos. Soc. 77 (1975), 43–69. Zbl 0297.58008, MR 0397797, 10.1017/S0305004100049410
Reference: [2] Atiyah, M.F., Patodi, V., Singer, I.: Spectral asymmetry and Riemannian geometry, II.Math. Proc. Cambridge Philos. Soc. 78 (1975), 405–432. Zbl 0314.58016, MR 0397798, 10.1017/S0305004100051872
Reference: [3] Beasley, C., Witten, E.: Non-abelian localization for Chern-Simons theory.J. Differential Geom. 70 (2005), 183–323. Zbl 1097.58012, MR 2192257
Reference: [4] Belov, D. M., Moore, G.W.: Classification of abelian spin Chern-Simons theories.hep-th/0505235, (2005).
Reference: [5] Boyer, C.P., Galicki, K.: Sasakian Geometry.Oxford University Press, 2008. Zbl 1155.53002, MR 2382957
Reference: [6] Braverman, M.: New proof of the Cheeger-Müller theorem.Ann. Global Anal. Geom. 23 (1) (2002), 77–92. MR 1952860, 10.1023/A:1021227705930
Reference: [7] Cheeger, J.: Analytic torsion and the heat equation.Ann. of Math. 109 (1979), 259–300. Zbl 0412.58026, MR 0528965, 10.2307/1971113
Reference: [8] Dijkgraaf, R., Witten, E.: Topological gauge theories and group cohomology.Comm. Math. Phys. 129 (1990), 486–522. Zbl 0703.58011, MR 1048699, 10.1007/BF02096988
Reference: [9] Dragomir, S., Tomassini, G.: Differential Geometry and Analysis on CR Manifolds.Progr. Math., vol. 246, Birkhäuser, Basel, 2006. Zbl 1099.32008, MR 2214654
Reference: [10] Furata, M., Steer, B.: Seifert fibred homology 3-spheres and the Yang-Mills equations on Riemann surfaces with marked points.Adv. Math. 96 (1) (1992), 38–102. MR 1185787, 10.1016/0001-8708(92)90051-L
Reference: [11] Jeffrey, L.C., McLellan, B.D.K.: Non-abelian localization for $U(1)$ Chern-Simons theory.Geometric Aspects of Analysis and Mechanics, Conf. Proc. (in honour of the $65^{th}$ birthday of Hans Duistermaat), Birkhäuser, 2009. MR 2809473
Reference: [12] Kawasaki, T.: The Riemann-Roch theorem for complex V-manifolds.Osaka J. Math. 16 (1) (1979), 151–159. Zbl 0405.32010, MR 0527023
Reference: [13] Kirk, P., Klassen, E.: Chern-Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of $T^{2}$.Comm. Math. Phys. 153 (3) (1993), 521–557. MR 1218931, 10.1007/BF02096952
Reference: [14] McLellan, B.D.K.: Localization in abelian Chern-Simons theory.J. Math. Phys. 54 (2013), arXiv:1208.1724[math-ph]. Zbl 1280.81102, MR 3076394
Reference: [15] Müller, W.: Analytic torsion and R-torsion on Reimannian manifolds.Adv. Math. 28 (1978), 233–305. 10.1016/0001-8708(78)90116-0
Reference: [16] Neumann, W.D., Raymond, F.: Seifert manifolds, plumbing, $\mu $-invariant and orientation reversing maps, Algebraic and geometric topology.Proc. Sympos., Univ. California, Santa Barbara, California, Lecture Notes in Math., 664, Springer, Berlin, (1978), 163–196, 1977. MR 0518415, 10.1007/BFb0061699
Reference: [17] Nicolaescu, L.I.: Finite energy Seiberg-Witten moduli spaces on 4-manifolds bounding Seifert fibrations.Comm. Anal. Geom. 8 (5) (2000), 1027–1096. Zbl 1001.58004, MR 1846125, 10.4310/CAG.2000.v8.n5.a3
Reference: [18] Orlik, P.: Seifert Manifolds.Lecture Notes in Math., Springer-Verlag, Berlin, 1972. Zbl 0263.57001, MR 0426001
Reference: [19] Orlik, P., Vogt, E., Zieschang, H.: Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten.Topology 6 (1967), 49–64. Zbl 0147.23503, MR 0212831, 10.1016/0040-9383(67)90013-4
Reference: [20] Prasolov, V.V., Sossinsky, A.B.: Knots, links, braids and 3-manifolds: An introduction to the new invariants in low-dimensional topology.Amer. Math. Soc. (1996), Vol. 154 of Translations of Mathematical Monographs. MR 1414898
Reference: [21] Ray, D., Singer, I.: Analytic torsion.Proc. Sympos. Pure Math. 23 (1973), 167–182. Zbl 0273.58014, MR 0339293
Reference: [22] Reidemeister, K.: Überdeckungen von Komplexen.J. Reine Angew. Math. 173 (1935), 164–173. Zbl 0012.12604
Reference: [23] Rumin, M.: Formes différentielles sur les variétés de contact.J. Differential Geom. 39 (2) (1994), 281–330. Zbl 0973.53524, MR 1267892
Reference: [24] Rumin, M., Seshadri, N.: Analytic torsions on contact manifolds.Ann. Inst. Fourier 62 (2012), 727–782. Zbl 1264.58027, MR 2985515, 10.5802/aif.2693
Reference: [25] Schwarz, A.S.: The partition function of degenerate functional.Comm. Math. Phys. 67 (1979), 1–16. MR 0535228, 10.1007/BF01223197
Reference: [26] Williams, F.L.: Lectures on zeta functions, L-functions and modular forms with some physical applications.A window into zeta and modular physics, MSRI Publications, 2010. Zbl 1225.11105, MR 2648361
Reference: [27] Witten, E.: Supersymmetry and Morse theory.J. Differential Geom. 17 (1982), 661–692. Zbl 0499.53056, MR 0683171
.

Files

Files Size Format View
ArchMathRetro_051-2015-3_5.pdf 551.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo