Title:
|
Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques (English) |
Author:
|
Mokhtari, A. |
Author:
|
Moussaoui, T. |
Author:
|
O’Regan, D. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
51 |
Issue:
|
3 |
Year:
|
2015 |
Pages:
|
163-173 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper discusses the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type problems with Dirichlet boundary data of the following form \[ {\left\rbrace \begin{array}{ll} -\Big (a+b\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\; dx\Big )\textrm{div}\big (|\nabla u|^{p(x)-2 } \nabla u\big )= f(x,u)\,, & in \quad \Omega \\[6pt] u=0 & on \quad \partial \Omega\,, \end{array}\right.} \] where $\Omega $ is a smooth open subset of $\mathbb{R}^N$ and $p\in C(\overline{\Omega })$ with $N <p^-= \inf _{x\in \Omega } p(x)\le p^+= \sup _{x\in \Omega } p(x)<+\infty $, $a$, $b$ are positive constants and $f\colon \overline{\Omega }\times \mathbb{R}\rightarrow \mathbb{R}$ is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory. (English) |
Keyword:
|
existence results |
Keyword:
|
genus theory |
Keyword:
|
nonlocal problems Kirchhoff equation |
Keyword:
|
critical point theory |
MSC:
|
34B27 |
MSC:
|
35B05 |
MSC:
|
35J60 |
idZBL:
|
Zbl 06487028 |
idMR:
|
MR3397269 |
DOI:
|
10.5817/AM2015-3-163 |
. |
Date available:
|
2015-09-09T09:46:37Z |
Last updated:
|
2016-04-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144427 |
. |
Reference:
|
[1] Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems.Cambridge Stud. Adv. Math., vol. 14, Cambridge Univ. Press, 2007. Zbl 1125.47052, MR 2292344 |
Reference:
|
[2] Antontsev, S.N., Rodrigues, J.F.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions.Nonlinear Anal. (2005), 515–545. MR 2103951 |
Reference:
|
[3] Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows.Ann. Univ. Ferrara Sez. VII (N.S.) 52 (2006), 19–36. Zbl 1117.76004, MR 2246902 |
Reference:
|
[4] Castro, A.: Metodos variacionales y analisis functional no linear.X Colóquio Colombiano de Matematicas, 1980. |
Reference:
|
[5] Clarke, D.C.: A variant of the Lusternik-Schnirelman theory.Indiana Univ. Math. J. 22 (1972), 65–74. MR 0296777, 10.1512/iumj.1973.22.22008 |
Reference:
|
[6] Corrêa, F.J.S.A., Figueiredo, G.M.: On an elliptic equation of p-Kirchhoff-type via variational methods.Bull. Austral. Math. Soc. 74 (2006), 263–277. Zbl 1108.45005, MR 2260494, 10.1017/S000497270003570X |
Reference:
|
[7] Corrêa, F.J.S.A., Figueiredo, G.M.: On a p-Kirchhoff equation via Krasnoselskii’s genus.Appl. Math. Lett. 22 ('2009), 819–822. Zbl 1171.35371, MR 2523587, 10.1016/j.aml.2008.06.042 |
Reference:
|
[8] Dai, G., Wei, J.: Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition.Nonlinear Anal. 73 (2010), 3420–3430. Zbl 1201.35181, MR 2680035, 10.1016/j.na.2010.07.029 |
Reference:
|
[9] Diening, L., Harjulehto, P., Hast"o, P., Ružička, M.: Lebesgue and Sobolev spaces with variable exponents.Lecture Notes in Math., vol. 2017, Springer, New York, 2011. MR 2790542 |
Reference:
|
[10] Fan, X.L., Zhao, D.: On the spaces $L^{p(x)}$ and $W^{m,p(x)}$.J. Math. Anal. Appl. 263 (2001), 424–446. MR 1866056 |
Reference:
|
[11] Kavian, O.: ‘Introduction ‘a la théorie des points critiques et applications aux problémes elliptiques.Springer-Verlag, 1993. Zbl 0797.58005 |
Reference:
|
[12] Kirchhoff, G.: Mechanik.Teubner, Leipzig, Germany, 1883. |
Reference:
|
[13] Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations.MacMillan, New York, 1964. MR 0159197 |
Reference:
|
[14] Peral, I.: Multiplicity of solutions for the p-Laplacian.Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997. |
Reference:
|
[15] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations.Conference Board of the Mathematical Sciences, by the American Mathematical Society, Providence, Rhode Island, 1984. MR 0845785 |
Reference:
|
[16] Ružička, M.: Electro-rheological Fluids: Modeling and Mathematical Theory.Springer-Verlag, Berlin, 2000. MR 1788852 |
Reference:
|
[17] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators.North-Holland, Amsterdam, 1978. Zbl 0387.46033, MR 0503903 |
Reference:
|
[18] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory.Math. USSR Izv. 9 (1987), 33–66. Zbl 0599.49031, MR 0864171, 10.1070/IM1987v029n01ABEH000958 |
. |