Previous |  Up |  Next

Article

Title: The $L^2$ $\bar \partial $-Cauchy problem on weakly $q$-pseudoconvex domains in Stein manifolds (English)
Author: Saber, Sayed
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 3
Year: 2015
Pages: 739-745
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a Stein manifold of complex dimension $n\ge 2$ and $\Omega \Subset X$ be a relatively compact domain with $C^2$ smooth boundary in $X$. Assume that $\Omega $ is a weakly \mbox {$q$-pseudoconvex} domain in $X$. The purpose of this paper is to establish sufficient conditions for the closed range of $\bar \partial $ on $\Omega $. Moreover, we study the \mbox {$\bar \partial $-problem} on $\Omega $. Specifically, we use the modified weight function method to study the weighted \mbox {$\bar \partial $-problem} with exact support in $\Omega $. Our method relies on the \mbox {$L^2$-estimates} by Hörmander (1965) and by Kohn (1973). (English)
Keyword: $\bar \partial $ operator
Keyword: $\bar \partial $-Neumann operator
Keyword: $q$-convex domain
Keyword: Stein manifold
MSC: 32F10
MSC: 32W05
idZBL: Zbl 06537689
idMR: MR3407602
DOI: 10.1007/s10587-015-0205-2
.
Date available: 2015-10-04T18:13:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144440
.
Reference: [1] Abdelkader, O., Saber, S.: Solution to $\bar\partial$-equations with exact support on pseudo-convex manifolds.Int. J. Geom. Methods Mod. Phys. 4 (2007), 339-348. MR 2343350, 10.1142/S0219887807002090
Reference: [2] Cao, J., Shaw, M.-C., Wang, L.: Estimates for the $\bar\partial$-Neumann problem and nonexistence of $C^2$ Levi-flat hypersurfaces in {${\Bbb C} P^n$}.Math. Z. 248 (2004), 183-221 errata dtto 248 223-225 (2004). MR 2092728
Reference: [3] Chen, S.-C., Shaw, M.-C.: Partial Differential Equations in Several Complex Variables.AMS/IP Studies in Advanced Mathematics 19 American Mathematical Society, Providence; International Press, Somerville (2001). Zbl 0963.32001, MR 1800297
Reference: [4] Demailly, J.-P.: Complex analytic and differential geometry.Preprint (2009) available at http://www-fourier.ujf-grenoble.fr/\char126 demailly/manuscripts/agbook.pdf.
Reference: [5] Demailly, J.-P.: Estimations $L^2$ pour l'opérateur $\bar\partial$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète.Ann. Sci. Éc. Norm. Supér. (4) 15 French (1982), 457-511. MR 0690650
Reference: [6] Derridj, M.: Inégalités de Carleman et extension locale des fonctions holomorphes.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 9 French (1982), 645-669. Zbl 0548.32013, MR 0693782
Reference: [7] Derridj, M.: Regularité pour $\bar\partial$ dans quelques domaines faiblement pseudo-convexes.J. Differ. Geom. 13 French (1978), 559-576. MR 0570218, 10.4310/jdg/1214434708
Reference: [8] Harrington, P. S., Raich, A.: Closed range for $\bar\partial$ and $\bar\partial_b$ on bounded hypersurfaces in Stein manifolds.arXiv:1106.0629 (2011). MR 2763350
Reference: [9] Ho, L.-H.: $\bar\partial$-problem on weakly $q$-convex domains.Math. Ann. 290 (1991), 3-18. Zbl 0714.32006, MR 1107660, 10.1007/BF01459235
Reference: [10] Hörmander, L.: $L^2$ estimates and existence theorems for the $\bar\partial$ operator.Acta Math. 113 (1965), 89-152. MR 0179443, 10.1007/BF02391775
Reference: [11] Kohn, J. J.: Harmonic integrals on strongly pseudo-convex manifolds. II.Ann. Math. (2) 79 (1964), 450-472. Zbl 0178.11305, MR 0208200, 10.2307/1970404
Reference: [12] Kohn, J. J.: Harmonic integrals on strongly pseudo-convex manifolds. I.Ann. Math. (2) 78 (1963), 112-148. Zbl 0161.09302, MR 0153030, 10.2307/1970506
Reference: [13] Morrow, J., Kodaira, K.: Complex Manifolds. Athena Series. Selected Topics in Mathematics.Holt, Rinehart and Winston, New York (1971). MR 0302937
Reference: [14] Saber, S.: The $\bar\partial$-problem on $q$-pseudoconvex domains with applications.Math. Slovaca 63 (2013), 521-530. MR 3071972, 10.2478/s12175-013-0115-4
Reference: [15] Saber, S.: Solution to $\bar\partial$ problem with exact support and regularity for the $\bar\partial$-Neumann operator on weakly $q$-convex domains.Int. J. Geom. Methods Mod. Phys. 7 (2010), 135-142. MR 2647774, 10.1142/S0219887810003963
Reference: [16] Sambou, S.: Résolution du $\bar\partial$ pour les courants prolongeables définis dans un anneau.Ann. Fac. Sci. Toulouse, Math. (6) 11 French (2002), 105-129. MR 1986385
Reference: [17] Shaw, M.-C.: Local existence theorems with estimates for $\bar\partial_b$ on weakly pseudo-convex CR manifolds.Math. Ann. 294 (1992), 677-700. MR 1190451, 10.1007/BF01934348
Reference: [18] Zampieri, G.: Complex Analysis and CR Geometry.University Lecture Series 43 American Mathematical Society, Providence (2008). Zbl 1160.32001, MR 2400390, 10.1090/ulect/043
.

Files

Files Size Format View
CzechMathJ_65-2015-3_9.pdf 248.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo