Previous |  Up |  Next

Article

Title: On almost equitable uninorms (English)
Author: Li, Gang
Author: Liu, Hua-Wen
Author: Fodor, János
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 699-711
Summary lang: English
.
Category: math
.
Summary: Uninorms, as binary operations on the unit interval, have been widely applied in information aggregation. The class of almost equitable uninorms appears when the contradictory information is aggregated. It is proved that among various uninorms of which either underlying t-norm or t-conorm is continuous, only the representable uninorms belong to the class of almost equitable uninorms. As a byproduct, a characterization for the class of representable uninorms is obtained. (English)
Keyword: uninorm
Keyword: representable uninorm
Keyword: aggregation functions
Keyword: negation
Keyword: contradictory information
MSC: 03B52
MSC: 03E72
MSC: 06F05
idZBL: Zbl 06530339
idMR: MR3423195
DOI: 10.14736/kyb-2015-4-0699
.
Date available: 2015-11-20T12:24:14Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144476
.
Reference: [1] Bustince, H., Montero, J., Mesiar, R.: Migrativity of aggregation functions..Fuzzy Sets Syst. 160 (2009), 766-777. Zbl 1186.68459, MR 2493274, 10.1016/j.fss.2008.09.018
Reference: [2] Baets, B. De: Idempotent uninorms..Eur. J. Oper. Res. 118 (1998), 631-642. Zbl 1178.03070, 10.1016/s0377-2217(98)00325-7
Reference: [3] Baets, B. De, Fodor, J.: Residual operators of uninorms..Soft Comput. 3 (1999), 89-100. 10.1007/s005000050057
Reference: [4] Baets, B.De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof..Fuzzy Sets Syst. 104 (1999), 133-136. Zbl 0928.03060, MR 1685816, 10.1016/s0165-0114(98)00265-6
Reference: [5] Baets, B. De, Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms..In: Seventh IFSA World Congress, Prague 1997, pp. 215-220.
Reference: [6] Hliněná, D., Kalina, M., Král', P.: A class of implications related to Yager's $f-$implications..Information Sciences 260 (2014), 171-184. MR 3146461, 10.1016/j.ins.2013.09.045
Reference: [7] Drygaś, P.: Discussion of the structure of uninorms..Kybernetika 41 (2005), 213-226. Zbl 1249.03093, MR 2138769
Reference: [8] Drygaś, P.: On the structure of continuous uninorms..Kybernetika 43 (2007), 183-196. Zbl 1132.03349, MR 2343394
Reference: [9] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums..Fuzzy Sets Syst. 161 (2010), 149-157. Zbl 1191.03039, MR 2566236, 10.1016/j.fss.2009.09.017
Reference: [10] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: A characterization of uninorms locally internal in $A(e)$ with continuous underlying operators..Fuzzy Sets Syst. (submitted).
Reference: [11] Fodor, J., Roubens, M.: Fuzzy Preference Modelling and Multicriteria Decision Support..Kluwer Academic Publishers, Dordrecht 1994. Zbl 0827.90002, 10.1007/978-94-017-1648-2
Reference: [12] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms..Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 5 (1997), 411-427. Zbl 1232.03015, MR 1471619, 10.1142/s0218488597000312
Reference: [13] Fodor, J., Baets, B. De: A single-point characterization of representable uninorms..Fuzzy Sets Syst. 202 (2012), 89-99. Zbl 1268.03027, MR 2934788, 10.1016/j.fss.2011.12.001
Reference: [14] Gabbay, D. M., Metcalfe, G.: Fuzzy logics based on $[0,1)$-continuous uninorms..Arch. Math. Log. 46 (2007), 425-449. Zbl 1128.03015, MR 2321585, 10.1007/s00153-007-0047-1
Reference: [15] Li, G., Liu, H.-W.: Distributivity and conditional distributivity of a uninorm with continuous underlying operators over a continuous t-conorm..Fuzzy Sets and Systems (2015). 10.1016/j.fss.2015.01.019
Reference: [16] Li, G., Liu, H.-W., Fodor, J.: Single-point characterization of uninorms with nilpotent underlying t-norm and t-conorm..Int. J. Uncertainty, Fuzziness, Knowledge-Based Syst. 22 (2014), 591-604. MR 3252143, 10.1142/s0218488514500299
Reference: [17] Hu, S., Li, Z.: The structure of continuous uninorms..Fuzzy Sets Syst. 124 (2001), 43-52. MR 1859776, 10.1016/s0165-0114(00)00044-0
Reference: [18] Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.: Migrative uninorms and nullnorms over t-norms and t-conorms..Fuzzy Sets and Syst. 261 (2015), 20-32. MR 3291483, 10.1016/j.fss.2014.05.012
Reference: [19] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7
Reference: [20] Petrík, M., Mesiar, R.: On the structure of special classes of uninorms..Fuzzy Sets Syst. 240 (2014), 22-38. Zbl 1315.03099, MR 3167510, 10.1016/j.fss.2013.09.013
Reference: [21] Pradera, A.: Uninorms and non-contradiction..In: Lecture Notes in Computer Sciences, vol. 5285, (V. Torra and Y. Narukawa, eds.), Springer 2008, pp. 50-61. Zbl 1178.68590, 10.1007/978-3-540-88269-5_6
Reference: [22] Pradera, A., Trillas, E.: Aggregation, non-contradiction and excluded-middle..Mathware Soft Comput. XIII (2006), 189-201. Zbl 1122.68128, MR 2321602
Reference: [23] Pradera, A., Trillas, E.: Aggregation operators from the ancient NC and EM point of view..Kybernetika 42 (2006), 243-260. Zbl 1249.03101, MR 2253387
Reference: [24] Pradera, A., Beliakov, G., Bustince, H.: Aggregation functions and contradictory information..Fuzzy Sets Syst. 191 (2012), 41-61. Zbl 1238.68162, MR 2874822, 10.1016/j.fss.2011.10.007
Reference: [25] Qin, F., Zhao, B.: The distributive equations for idempotent uninorms and nullnorms..Fuzzy Sets Syst. 155 (2005), 446-458. Zbl 1077.03514, MR 2181001, 10.1016/j.fss.2005.04.010
Reference: [26] Ruiz, D., Torrens, J.: Distributivity and conditional distributivity of a uninorm and a continuous t-conorm..IEEE Trans. Fuzzy Syst. 14 (2006), 180-190. 10.1109/tfuzz.2005.864087
Reference: [27] Ruiz-Aguilera, D., Torrens, J., Baets, B. De, Fodor, J. C.: Some remarks on the characterization of idempotent uninorms..In: IPMU 2010, LNAI 6178 (E. Hüllermeier, R. Kruse and F. Hoffmann, eds.), Springer-Verlag, Berlin - Heidelberg 2010, pp. 425-434. 10.1007/978-3-642-14049-5_44
Reference: [28] Ruiz-Aguilera, D., Torrens, J.: S- and R-implications from uninorms continuous in $]0,1[^{2}$ and their distributivity over uninorms..Fuzzy Sets Syst. 160 (2009), 832-852. Zbl 1184.03014, MR 2493278, 10.1016/j.fss.2008.05.015
Reference: [29] Xie, A., Liu, H.: On the distributivity of uninorms over nullnorms..Fuzzy Sets Syst. 211 (2013), 62-72. Zbl 1279.03047, MR 2991797, 10.1016/j.fss.2012.05.008
Reference: [30] Yager, R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets Syst. 80 (1996), 111-120. Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6
Reference: [31] Yager, R., Rybalov, A.: Bipolar aggregation using the Uninorms..Fuzzy Optim. Decis. Making 10 (2011), 59-70. Zbl 1304.91068, MR 2799503, 10.1007/s10700-010-9096-8
Reference: [32] Yager, R.: Uninorms in fuzzy systems modeling..Fuzzy Sets Syst. 122 (2001), 167-175. Zbl 0978.93007, MR 1839955, 10.1016/s0165-0114(00)00027-0
.

Files

Files Size Format View
Kybernetika_51-2015-4_9.pdf 270.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo