Previous |  Up |  Next

Article

Title: Fuzzy orness measure and new orness axioms (English)
Author: Jin, LeSheng
Author: Kalina, Martin
Author: Qian, Gang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 712-723
Summary lang: English
.
Category: math
.
Summary: We have modified the axiomatic system of orness measures, originally introduced by Kishor in 2014, keeping altogether four axioms. By proposing a fuzzy orness measure based on the inner product of lattice operations, we compare our orness measure with Yager's one which is based on the inner product of arithmetic operations. We prove that fuzzy orness measure satisfies the newly proposed four axioms and propose a method to determine OWA operator with given fuzzy orness degree. (English)
Keyword: aggregation function
Keyword: OWA operator
Keyword: orness measure
MSC: 03E72
MSC: 28E10
idZBL: Zbl 06530340
idMR: MR3423196
DOI: 10.14736/kyb-2015-4-0712
.
Date available: 2015-11-20T12:25:51Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144477
.
Reference: [1] Choquet, G.: Theory of capacities..Ann. Inst. Fourier 5 (1953), 131-295. Zbl 0679.01011, MR 0080760, 10.5802/aif.53
Reference: [2] Dujmović, J. J.: LSP method and its use for evaluation of Java IDEs..Int. J. Approx. Reasoning 41 (2006), 3-22. Zbl 1092.68553, 10.1016/j.ijar.2005.06.006
Reference: [3] Dujmović, J. J.: Continuous preference logic for system evaluation..IEEE Trans. Fuzzy Syst. 15 (2007), 6, 1082-1099. 10.1109/tfuzz.2007.902041
Reference: [4] Dujmović, J. J.: Andness and orness as a mean of overall importance..In: IEEE International Conference on Fuzzy Systems, FUZZ 2012, Brisbane 2012, pp. 1-6. 10.1109/fuzz-ieee.2012.6250777
Reference: [5] Filev, D., Yager, R. R.: On the issue of obtaining OWA operator weights..Fuzzy Sets and Systems 94 (1998), 157-169. MR 1614114, 10.1016/s0165-0114(96)00254-0
Reference: [6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, Cambridge 2009. Zbl 1206.68299, MR 2538324, 10.1017/cbo9781139644150
Reference: [7] Hesamian, G., Taheri, S. M.: Fuzzy empirical distribution function: Properties and application..Kybernetika, 49 (2013), 6, 962-982. MR 3182651
Reference: [8] Jin, L.: Some properties and representation methods for Ordered Weighted Averaging operators..Fuzzy Sets and Systems 261 (2015), 60-86. MR 3291486, 10.1016/j.fss.2014.04.019
Reference: [9] Kishor, A., Singh, A. K., Pal, N. R.: Orness measure of OWA operators: a new approach..IEEE Trans. Fuzzy Syst. 22 (2014), 4, 1039-1045. 10.1109/tfuzz.2013.2282299
Reference: [10] Kolesárová, A., Mesiar, R., Rückschlossová, T.: Power stable aggregation functions..Fuzzy Sets and Systems 240 (2014), 39-50. Zbl 1315.68238, MR 3167511, 10.1016/j.fss.2013.05.005
Reference: [11] Liu, X. W.: On the properties of equidifferent OWA operator..Int. J. Approx. Reasoning 43 (2006), 90-107. Zbl 1102.68130, MR 2252608, 10.1016/j.ijar.2005.11.003
Reference: [12] Liu, X. W.: An orness measure for quasi-arithmetic means..IEEE Trans. Fuzzy Syst. 16 (2006), 6, 837-848. 10.1109/tfuzz.2006.879990
Reference: [13] Liu, X. W.: Models to determine parameterized ordered weighted averaging operators using optimization criteria..Inf. Sci. 190 (2012), 27-55. MR 2881829, 10.1016/j.ins.2011.12.007
Reference: [14] Liu, X. W., Chen, L. H.: On the properties of parametric geometric OWA operator..Int. J. Approx. Reasoning 35 (2004), 163-178. Zbl 1068.68147, MR 2035920, 10.1016/j.ijar.2003.09.001
Reference: [15] Liu, X. W., Han, S. L.: Orness and parameterized RIM quantifier aggregation with OWA operators: A summary..Int. J. Approx. Reasoning 48 (2008), 77-97. Zbl 1184.68516, MR 2420662, 10.1016/j.ijar.2007.05.006
Reference: [16] Mareš, M., Mesiar, R.: Information in vague data sources..Kybernetika 49 (2013), 3, 433-445. MR 3085407
Reference: [17] Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals..Int. J. Approx. Reasoning 54 (2013), 357-364. Zbl 1267.28018, MR 3021836, 10.1016/j.ijar.2012.07.008
Reference: [18] Mesiar, R., Li, J., Pap, E.: Superdecomposition integrals..Fuzzy Sets Syst. 259 (2015), 3-11. MR 3278740, 10.1016/j.fss.2014.05.003
Reference: [19] Mesiar, R., Stupňanová, A.: Decomposition integrals..Int. J. Approx. Reason. 54 (2013), 1252-1259. Zbl 1316.28015, MR 3081310, 10.1016/j.ijar.2013.02.001
Reference: [20] Sugeno, M.: Theory of Fuzzy Integrals and its Applications..PhD. Thesis. Tokyo Institute of Technology 1974.
Reference: [21] Torra, V.: The weighted OWA operator..Int. J. Intell. Syst. 12 (1997), 153-166. Zbl 0867.68089, 10.1002/(sici)1098-111x(199702)12:2<153::aid-int3>3.0.co;2-p
Reference: [22] Troiano, L., Yager, R. R.: Recursive and iterative OWA operators..Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 13 (2005), 6, 579-599. Zbl 1085.68172, MR 2198351, 10.1142/s0218488505003680
Reference: [23] Wallmann, C., Kleiter, G. D.: Degradation in probability logic: When more information leads to less precise conclusions..Kybernetika 50 (2014), 2, 268-283. Zbl 1296.03018, MR 3216994, 10.14736/kyb-2014-2-0268
Reference: [24] Xu, Z. S.: An overview of methods for determining OWA weights..Int. J. Intell. Syst. 20 (2005), 8, 843-865. Zbl 1073.90020, 10.1002/int.20097
Reference: [25] Yager, R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making..IEEE Trans. Syst. Man Cybern. 18 (1) (1988), 183-190. MR 0931863, 10.1109/21.87068
Reference: [26] Yager, R. R.: Families of OWA operators..Fuzzy Sets and Systems 59 (1993), 125-143. Zbl 0790.94004, MR 1253838, 10.1016/0165-0114(93)90194-m
Reference: [27] Yager, R. R.: Quantifier guided aggregation using OWA operators..Int. J. Intell. Syst. 11 (1996), 49-73. 10.1002/(sici)1098-111x(199601)11:1<49::aid-int3>3.0.co;2-z
Reference: [28] Yager, R. R.: Induced aggregation operators..Fuzzy Sets and Systems 137 (2003), 59-69. Zbl 1056.68146, MR 1992698, 10.1016/s0165-0114(02)00432-3
Reference: [29] Yager, R. R.: OWA Aggregation Over a Continuous Interval Argument With Applications to Decision Making..IEEE Trans. Syst. Man Cybern. Part B 34 (2004), 1952-1963. 10.1109/tsmcb.2004.831154
Reference: [30] Yager, R. R.: Centered OWA operators..Soft Computing 11 (2007), 631-639. Zbl 1113.68106, 10.1007/s00500-006-0125-z
Reference: [31] Yager, R. R.: Time series smoothing and OWA aggregation..IEEE Trans. Fuzzy Syst. 16 (4) (2008), 994-1007. 10.1109/tfuzz.2008.917299
Reference: [32] Yager, R. R.: Norms induced from OWA operators..IEEE Trans. Fuzzy Syst. 18 (2010), 1, 57-66. MR 0739426, 10.1109/tfuzz.2009.2035812
Reference: [33] Yager, R. R.: Probabilistically weighted OWA aggregation..IEEE Trans. Fuzzy Syst. 22 (2014), 46-56. 10.1109/tfuzz.2013.2245899
Reference: [34] Yager, R. R., Filev, D. P.: Parameterized and-like and or-like OWA operators..Int. J. Gen. Syst. 22 (1994), 297-316. 10.1080/03081079408935212
Reference: [35] Yager, R. R., Filev, D. P.: Operations for granular computing: mixing words and numbers..In: Fuzzy Systems Proceedings IEEE World Congress on Computational Intelligence, Anchorage 1998, pp. 123-128. 10.1109/fuzzy.1998.687470
Reference: [36] Yager, R. R., Filev, D. P.: Induced ordered weighted averaging operators..IEEE Trans. Syst. Man Cybernet. 29 (1999), 141-150. 10.1109/3477.752789
Reference: [37] Yager, R. R., Kacprzyk, J., Beliakov, G.: Recent Developments on the Ordered Weighted Averaging Operators: Theory and Practice..Springer-Verlag, Berlin 2011. MR 2757526, 10.1007/978-3-642-17910-5
.

Files

Files Size Format View
Kybernetika_51-2015-4_10.pdf 303.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo