Title:
|
Remarks on effect-tribes (English) |
Author:
|
Pulmannová, Sylvia |
Author:
|
Vinceková, Elena |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
51 |
Issue:
|
5 |
Year:
|
2015 |
Pages:
|
739-746 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that an effect tribe of fuzzy sets ${\mathcal T}\subseteq [0,1]^X$ with the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, where ${\mathcal B}_0({\mathcal T})$ is the family of subsets of $X$ whose characteristic functions are central elements in ${\mathcal T}$, is a tribe. Moreover, a monotone $\sigma$-complete effect algebra with RDP with a Loomis-Sikorski representation $(X, {\mathcal T},h)$, where the tribe ${\mathcal T}$ has the property that every $f\in {\mathcal T}$ is ${\mathcal B}_0({\mathcal T})$-measurable, is a $\sigma$-MV-algebra. (English) |
Keyword:
|
effect-tribe |
Keyword:
|
tribe |
Keyword:
|
monotone $\sigma $-complete effect algebra |
Keyword:
|
Riesz decomposition property |
Keyword:
|
MV-algebra |
MSC:
|
81P10 |
MSC:
|
81P15 |
idZBL:
|
Zbl 06537777 |
idMR:
|
MR3445981 |
DOI:
|
10.14736/kyb-2015-5-0739 |
. |
Date available:
|
2015-12-16T18:54:18Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144740 |
. |
Reference:
|
[1] Buhagiar, D., Chetcuti, E., Dvurečenskij, A.: Loomis-Sikorski representation of monotone $\sigma$-complete effect algebras..Fuzzy Sets Syst. 157 (2006), 683-690. Zbl 1097.06010, MR 2211326, 10.1016/j.fss.2005.09.013 |
Reference:
|
[2] Butnariu, D., Klement, E. P.: Triangular Norm Based Measures and Games with Fuzzy Coalitions..Kluwer Academic Publisher, Dordrecht 1993. Zbl 0804.90145, MR 2867321, 10.1007/978-94-017-3602-2 |
Reference:
|
[3] Dvurečenskij, A.: Representation of states on effect-tribes and effect algebras by integrals..Rep. Math. Phys. 67 (2011), 63-85. Zbl 1238.81008, MR 2830095, 10.1016/s0034-4877(11)80011-x |
Reference:
|
[4] Dvurečenskij, A.: Smearing of observables and spectral measures on quantum structures..Found. Phys. 43 (2013), 210-224. Zbl 1270.81012, MR 3019888, 10.1007/s10701-012-9689-x |
Reference:
|
[5] Dvurečenskij, A.: Central elements and Cantor-Bernstein's theorem for pseudo effect algebras..J. Austral. Math. Soc. 74 (2003), 121-143. Zbl 1033.03036, MR 1948263, 10.1017/s1446788700003177 |
Reference:
|
[6] Dvurečenskij, A.: Loomis-Sikorski theorem for $\sigma$-complete MV-algebras and $\ell$-groups..J. Austral. Math. Soc. Ser. A 68 (2000), 261-277. Zbl 0958.06006, MR 1738040, 10.1017/s1446788700001993 |
Reference:
|
[7] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures..Kluwer Academic/Ister Science, Dordrecht/Bratislava 2000. Zbl 0987.81005, MR 1861369, 10.1007/978-94-017-2422-7 |
Reference:
|
[8] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics..Found. Phys. 24 (1994), 1325-1346. Zbl 1213.06004, MR 1304942, 10.1007/bf02283036 |
Reference:
|
[9] Greechie, R. J., Foulis, D. J., Pulmannová, S.: The center of an effect algebra..Order 12 (1995), 91-106. Zbl 0846.03031, MR 1336539, 10.1007/bf01108592 |
Reference:
|
[10] Goodearl, K. R.: Partially Ordered Abelian Groups with Interpolation..Math. Surveys and Monographs, Vol. 20, Am. Math. Soc., Providence 1986. Zbl 0589.06008, MR 0845783, 10.1007/bf01108592 |
Reference:
|
[11] Jenčová, A., Pulmannová, S., Vinceková, E.: Observables on $\sigma$-MV algebras and $\sigma$-lattice effect algebras..Kybernetika 47 (2011), 541-559. Zbl 1237.81008, MR 2884860 |
Reference:
|
[12] Mundici, D.: Interpretation of AF C*-algebras in Łukasiewicz sentential calculus..Funct. Anal. 65 (1986), 15-63. MR 0819173, 10.1016/0022-1236(86)90015-7 |
Reference:
|
[13] Mundici, D.: Tensor product and the Loomis-Sikorski theorem for MV-algebras..Adv. Appl. Math. 22 (1999), 227-248. MR 1659410, 10.1006/aama.1998.0631 |
Reference:
|
[14] Pulmannová, S.: A spectral theorem for sigma MV-algebras..Kybernetika 41 (2005), 361-374. Zbl 1249.03119, MR 2181424 |
Reference:
|
[15] Ravindran, K.: On a Structure Theory of Effect Algebras..PhD. Thesis, Kansas State Univ. Manhattan 1996. MR 2694228 |
. |