Previous |  Up |  Next

Article

Title: Synchronization of two coupled Hindmarsh-Rose neurons (English)
Author: Ding, Ke
Author: Han, Qing-Long
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 784-799
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with synchronization of two coupled Hind-marsh-Rose (HR) neurons. Two synchronization criteria are derived by using nonlinear feedback control and linear feedback control, respectively. A synchronization criterion for FitzHugh-Nagumo (FHN) neurons is derived as the application of control method of this paper. Compared with some existing synchronization results for chaotic systems, the contribution of this paper is that feedback gains are only dependent on system parameters, rather than dependent on the norm bounds of state variables of uncontrolled and controlled HR neurons. The effectiveness of our results are demonstrated by two simulation examples. (English)
Keyword: coupled neurons
Keyword: Hindmarsh–Rose neurons
Keyword: synchronization
Keyword: feedback control
MSC: 34D06
idZBL: Zbl 06537780
idMR: MR3445984
DOI: 10.14736/kyb-2015-5-0784
.
Date available: 2015-12-16T19:00:07Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144743
.
Reference: [1] Barrio, R., Martinez, M. A., Serrano, S., Shilnikov, A.: Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons..Chaos 24 (2014), 023128. MR 3403326, 10.1063/1.4882171
Reference: [2] Chalike, S. K., Lee, K. W., Singh, S. N.: Synchronization of inferior olive neurons via $L_1$ adaptive feedback..Nonlinear Dynam. 78 (2014), 467-483. MR 3266456, 10.1007/s11071-014-1454-6
Reference: [3] Checco, P., Righero, M., Biey, M., Kocarev, L.: Synchronization in networks of Hindmarsh-Rose neurons..IEEE Trans. Circuits Syst. II: Exp. Briefs 55 (2008), 1274-1278. 10.1109/tcsii.2008.2008057
Reference: [4] Ferrari, F. A. S., Viana, R. L., Lopesa, S. R., Stoop, R.: Phase synchronization of coupled bursting neurons and the generalized Kuramoto model..Neural Netw. 66 (2015), 107-118. 10.1016/j.neunet.2015.03.003
Reference: [5] Hindmarsh, J. L., Rose, R. M.: A mode of the nerve impulse using two first-order differential equations..Nature 296 (1982), 162-164. 10.1038/296162a0
Reference: [6] Holden, A. V., Fan, Y. S.: From simple to simple bursting oscillatory behaviour via chaos in the Rose-Hindmarsh model for neuronal activity..Chaos Soliton Fract. 2 (1992), 221-236. Zbl 0766.92006, 10.1016/0960-0779(92)90032-i
Reference: [7] Hosaka, R., Sakai, Y., Aihara, K.: Strange responses to fluctuating inputs in the Hindmarsh-Rose neurons..Lect. Notes Comput. Sci. 5864 (2009), 401-408. 10.1007/978-3-642-10684-2_45
Reference: [8] Hrg, D.: Synchronization of two Hindmarsh-Rose neurons with unidirectional coupling..Neural Netw. 40 (2013), 73-79. Zbl 1283.92017, 10.1016/j.neunet.2012.12.010
Reference: [9] Khalil, H. K.: Nonlinear Systems. Third edition..Prentice Hall, Upper Saddle River 2002.
Reference: [10] Kuntanapreeda, S.: Chaos synchronization of unified chaotic systems via LMI..Phys. Lett. A 373 (2009), 2837-2840. Zbl 1233.93047, 10.1016/j.physleta.2009.06.006
Reference: [11] Li, H. Y., Hu, Y. A., Wang, R. Q.: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties..Kybernetika 49 (2013), 554-567. MR 3117914
Reference: [12] Li, R., He, Z.: Bifurcations and chaos in a two-dimensional discrete Hindmarsh-Rose model..Nonlinear Dynam. 76 (2014), 697-715. Zbl 1319.37024, MR 3189203, 10.1007/s11071-013-1161-8
Reference: [13] Liang, H., Wang, Z., Yue, Z., Lu, R.: Generalized synchronization and control for incommensurate fractional unified chaotic system and applications in secure communication..Kybernetika 48 (2012), 190-205. Zbl 1256.93084, MR 2954320
Reference: [14] Liu, X., Liu, S.: Codimension-two bifurcation analysis in two-dimensional Hindmarsh-Rose model..Nonlinear Dynam. 67 (2012), 847-857. Zbl 1245.34047, MR 2869243, 10.1007/s11071-011-0030-6
Reference: [15] Lü, J., Zhou, T., Chen, G., Yang, X.: Generating chaos with a switching piecewise-linear controller..Chaos 12 (2002), 344-349. 10.1063/1.1478079
Reference: [16] Ma, M. H., Zhang, H., Cai, J. P., Zhou, J.: Impulsive practical synchronization of n-dimensional nonautonomous systems with parameter mismatch..Kybernetika 49 (2013), 539-553. Zbl 1274.70039, MR 3117913
Reference: [17] Meyer, T., Walker, C., Cho, R. Y., Olson, C. R.: Image familiarization sharpens response dynamics of neurons in inferotemporal cortex..Nat. Neurosci. 17 (2014), 1388-1394. 10.1038/nn.3794
Reference: [18] Nguyena, L. H., Hong, K. S.: Synchronization of coupled chaotic FitzHugh-Nagumo neurons via Lyapunov functions..Math. Comput. Simulations 82 (2011), 590-603. MR 2877386, 10.1016/j.matcom.2011.10.005
Reference: [19] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic system..Phys. Rev. Lett. 64 (1990), 821-824. MR 1038263, 10.1103/physrevlett.64.821
Reference: [20] Sadeghi, S., Valizadeh, A.: Synchronization of delayed coupled neurons in presence of inhomogeneity..J. Comput. Neurosci. 36 (2014), 55-66. MR 3160746, 10.1007/s10827-013-0461-9
Reference: [21] Sedov, A. S., Medvednik, R. S., Raeva, S. N.: Significance of local synchronization and oscillatory processes of thalamic neurons in goal-directed human behavior..Hum. Physiol. 40 (2014), 1-7. 10.1134/s0362119714010137
Reference: [22] Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R.: A Systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation..IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 854-864. 10.1109/tcsi.2013.2283994
Reference: [23] Shen, C. W., Yu, S. M., Lu, J. H., Chen, G. R.: Designing hyperchaotic systems with any desired number of positive lyapunov exponents via a simple model..IEEE Trans. Circuits Syst. I: Reg. Papers 61 (2014), 2380-2389. 10.1109/tcsi.2014.2304655
Reference: [24] Tan, X. H., Zhang, J. Y., Yang, Y. R.: Synchronizing chaotic systems using backstepping design..Chaos Soliton Fract. 16 (2003), 37-45. Zbl 1035.34025, MR 1941155, 10.1016/s0960-0779(02)00153-4
Reference: [25] Wang, J. G., Cai, J. P., Ma, M. H., Feng, J. C.: Synchronization with error bound of non-identical forced oscillators..Kybernetika 44 (2008), 534-545. Zbl 1173.70009, MR 2459071
Reference: [26] Wang, Q., Lu, Q., Chen, G., Guo, D.: Chaos synchronization of coupled neurons with gap junction..Phys. Lett. A 356 (2006), 17-25. 10.1016/j.physleta.2006.03.017
Reference: [27] Wang, C. N., Ma, J., Tang, J., Li, Y. L.: Instability and death of spiral wave in a two-dimensional array of Hindmarsh-Rose neurons..Commun. Theor. Phys. 53 (2010), 382-388. 10.1088/0253-6102/53/2/32
Reference: [28] Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium..Kybernetika 49 (2013), 359-374. Zbl 1276.34043, MR 3085401
Reference: [29] Wu, X. F., Zhao, Y., Wang, M. H.: Global synchronization of chaotic Lur'e systems via replacing variables control..Kybernetika 44 (2008), 571-584. Zbl 1175.37040, MR 2459074
Reference: [30] Wu, A. L., Zeng, Z. G.: Exponential passivity of memristive neural networks with time delays..Neural Netw. 49 (2014), 11-18. Zbl 1296.93153, 10.1016/j.neunet.2013.09.002
.

Files

Files Size Format View
Kybernetika_51-2015-5_5.pdf 5.792Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo