Previous |  Up |  Next

Article

Title: Stability analysis and absolute synchronization of a three-unit delayed neural network (English)
Author: Wang, Lin Jun
Author: Xie, You Xiang
Author: Wei, Zhou Chao
Author: Peng, Jian
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 800-813
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider a three-unit delayed neural network system, investigate the linear stability, and obtain some sufficient conditions ensuring the absolute synchronization of the system by the Lyapunov function. Numerical simulations show that the theoretically predicted results are in excellent agreement with the numerically observed behavior. (English)
Keyword: absolute synchronization
Keyword: delay
Keyword: linear stability
Keyword: neural network
MSC: 34D06
MSC: 34D20
idZBL: Zbl 06537781
idMR: MR3445985
DOI: 10.14736/kyb-2015-5-0800
.
Date available: 2015-12-16T19:01:54Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144744
.
Reference: [1] Albertini, F., Alessandro, D.: Further conditions on the stability of continuous time systems with saturation..IEEE Trans. Circuits Syst I. 47 (2000), 723-729. 10.1109/81.847877
Reference: [2] Bélair, J., Campbell, S. A., Driessche, P. van den: Frustration, stability, and delay-induced oscillations in a neural network model..SIAM J. Appl. Math. 56 (1996), 245-255. MR 1372899, 10.1137/s0036139994274526
Reference: [3] Bélair, J.: Stability in a model of a delayed neural network..J. Dynam. Dif. Equns. 5 (1993), 603-623. Zbl 0796.34063, MR 1250263, 10.1007/bf01049141
Reference: [4] Bélair, J., Campbell, S. A.: Stability and bifurcations of equilibria in a multiple-delayed differential equation..SIAM J. Appl. Math. 54 (1994), 1402-1424. Zbl 0809.34077, MR 1293106, 10.1137/s0036139993248853
Reference: [5] Beuter, A., Belair, J., Labrie, C.: Feedback and delays in neurological diseases: a modelling study using dynamical systems..Bull. Math. Biol. 55 (1993), 525-541. 10.1016/s0092-8240(05)80238-1
Reference: [6] Campbell, S. A., Ruan, S., Wolkowicz, G. S. K., Wu, J.: Stability and bifurcation of a simple neural network with multiple time delays..Fields Institute Communications, vol. 21, American Mathematical Society, Providence, RI, 1998, pp. 65-79. MR 1662603
Reference: [7] Chen, Y., Huang, Y., Wu, J.: desynchronization of large scale delayed neural networks..Proc. Amer. Math. Soc. 128 (2000), 2365-2371. Zbl 0945.34056, MR 1709744, 10.1090/s0002-9939-00-05635-5
Reference: [8] Chen, Y., Lü, J. H., Lin, Z. L.: Consensus of discrete-time multi-agent systems with transmission nonlinearity..Automatica 49 (2013), 1768-1775. MR 3049226, 10.1016/j.automatica.2013.02.021
Reference: [9] Cushing, J. M.: Integro-differential Equations and Delay Models in Population Dynamics..Lecture Notes in Biomath, vol. 20, Springer, New York 1977. 10.1007/978-3-642-93073-7
Reference: [10] Dhamala, M., Jirsa, V., Ding, M.: Enhancement of neural synchrony by time delay..Phys. Rev. Lett. 92 (2004), 74-104. 10.1103/physrevlett.92.074104
Reference: [11] Diekmann, O., Gils, S. A. van, Lunel, S. M. Verduyn, Walther, H. O.: Delay Equations, Functional, Complex, and Nonlinear Analysis..Springer Verlag, New York 1995. MR 1345150, 10.1007/978-1-4612-4206-2
Reference: [12] ., P., Driessche, Zou, X.: Global attractivity in delayed Hopfield neural network models..SIAM J. Appl. Math. 58 (1998), 1878-1890. MR 1638696, 10.1137/s0036139997321219
Reference: [13] Faria, T.: On a planar system modelling a neuron network with memory..J. Diff. Equns. 168 (2000), 129-149. Zbl 0961.92002, MR 1801347, 10.1006/jdeq.2000.3881
Reference: [14] Faria, T., Magalhes, L. T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation..J. Diff. Equations. 122 (1995), 181-200. MR 1355888, 10.1006/jdeq.1995.1144
Reference: [15] Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural network of excitation and inhibition..Physica D. 89 (1996), 395-426. MR 1369242, 10.1016/0167-2789(95)00203-0
Reference: [16] Hale, J.: Theory of Functional Differential Equations..Springer, New York 1997. Zbl 0662.34064, MR 0508721
Reference: [17] Hale, J., Kocak, H.: Dynamics and Bifurcations..Springer, New York 1991. Zbl 0745.58002, MR 1138981
Reference: [18] Hale, J., Lunel, S. V.: Introduction to Functional Differential Equations..Springer, New York 1993. Zbl 0787.34002, MR 1243878, 10.1007/978-1-4612-4342-7
Reference: [19] Hirsch, M. W.: Convergent activation dynamics in continuous-time networks..Neural Networks 2 (1989), 331-349. 10.1016/0893-6080(89)90018-x
Reference: [20] Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons..Proc. Natl. Acad. Sci. USA 81 (1994), 3088-3092. 10.1073/pnas.81.10.3088
Reference: [21] Huang, L., Wu, J.: Dynamics of inhibitory artificial neural networks with threshold nonlinearity..Fields Ins. Commun. 29 (2001), 235-243. Zbl 0973.92002, MR 1821784
Reference: [22] Karimi, H. R., Gao, H. J.: New Delay-Dependent Exponential H$\infty$ Synchronization for Uncertain Neural Networks with Mixed Time Delays..IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 40 (2010), 173-185. 10.1109/tsmcb.2009.2024408
Reference: [23] Liu, Y. R., Wang, Z. D., Liang, J. L.: Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays..IEEE Transactions on Neural Networks 20 (2009), 1102-1116. 10.1109/tnn.2009.2016210
Reference: [24] Lü, J. H., Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria..IEEE Trans. Automat. Control 50 (2005), 6, 841-846. MR 2142000, 10.1109/tac.2005.849233
Reference: [25] Marcus, C. M., Westervelt, R. M.: Stability of analog neural networks with delay..Phys. Rev. A. 39 (1989), 347-359. MR 0978323, 10.1103/physreva.39.347
Reference: [26] Niebur, E., Schuster, H., Kammen, D.: Collective frequencies and meta stability in networks of limit-cycle oscillators with time delay..Phys. Rev. Lett. 67 (1991), 2753-2756. 10.1103/physrevlett.67.2753
Reference: [27] Rosenblum, M. G., Pikovsky, A. S.: Controlling synchronization in an ensemble of globally coupled oscillators..Phys. Rev. Lett. 92 (2004), 102-114. 10.1103/physrevlett.92.114102
Reference: [28] Ruan, S., Wei, J.: On the zeros of transcendental functions with applications to stability of delayed differential equations with two delays, Dyn..Discrete Impuls Syst Ser A: Math. Anal. 10 (2003), 63-74. MR 2008751
Reference: [29] Wu, J.: Introduction to Neural Dynamics and Signal Transmission Delay..Walter de Cruyter, Berlin 2001. Zbl 0977.34069, MR 1834537, 10.1515/9783110879971
Reference: [30] Wu, J.: Symmetric functional differential equations and neural networks with memory..Trans. Amer. Math. Soc. 350 (1998), 4799-4838. Zbl 0905.34034, MR 1451617, 10.1515/9783110879971
Reference: [31] Yeung, M., Strogatz, S.: Time delay in the Kuramoto model of coupled oscillators..Phys. Rev. Lett. 82 (1999), 648-651. MR 2699004, 10.1103/physrevlett.82.648
Reference: [32] Zhou, J., Lu, J. A., Lü, J. H.: Adaptive synchronization of an uncertain complex dynamical network..IEEE Trans. Automat. Control 51 (2006), 4, 652-656. MR 2228029, 10.1109/tac.2006.872760
.

Files

Files Size Format View
Kybernetika_51-2015-5_6.pdf 336.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo