Previous |  Up |  Next

Article

Title: Notes on symmetric conformal geometries (English)
Author: Gregorovič, Jan
Author: Zalabová, Lenka
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 287-296
Summary lang: English
.
Category: math
.
Summary: In this article, we summarize the results on symmetric conformal geometries. We review the results following from the general theory of symmetric parabolic geometries and prove several new results for symmetric conformal geometries. In particular, we show that each symmetric conformal geometry is either locally flat or covered by a pseudo-Riemannian symmetric space, where the covering is a conformal map. We construct examples of locally flat symmetric conformal geometries that are not pseudo-Riemannian symmetric spaces. (English)
Keyword: conformal geometry
Keyword: symmetric space
Keyword: parallel Weyl tensor
MSC: 53A30
MSC: 53C35
idZBL: Zbl 06537731
idMR: MR3449109
DOI: 10.5817/AM2015-5-287
.
Date available: 2016-01-11T10:08:36Z
Last updated: 2017-02-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144771
.
Reference: [1] Čap, A., Melnick, K.: Essential Killing fields of parabolic geometries: projective and conformal structures.Central European Journal of Mathematics 11 (12) (2013), 2053–2061. Zbl 1286.53017, MR 3111705
Reference: [2] Čap, A., Slovák, J.: Parabolic Geometries: Background and general theory.Math. Surveys and Monogr., vol. 154, Amer. Math. Soc., 2009. MR 2532439, 10.1090/surv/154/03
Reference: [3] Derdzinski, A., Roter, W.: Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds.Tohoku Math. J. 59 (4) (2007), 565–602. Zbl 1146.53014, MR 2404206, 10.2748/tmj/1199649875
Reference: [4] Gregorovič, J.: Classification of invariant AHS-structures on semisimple locally symmetric spaces.Central European Journal of Mathematics 11 (12) (2013), 2062–2075. Zbl 1300.53054, MR 3111706
Reference: [5] Gregorovič, J., Zalabová, L.: On automorphisms with natural tangent action on homogeneous parabolic geometries.J. Lie Theory 25 (2015), 677–715. MR 3384992
Reference: [6] Kruglikov, B., The, D.: The gap phenomenon in parabolic geometries.arXiv:1303.1307.
Reference: [7] Zalabová, L.: Symmetries of parabolic geometries.Differential Geom. Appl. 27 (5) (2009), 605–622. Zbl 1187.53036, MR 2567839, 10.1016/j.difgeo.2009.03.001
Reference: [8] Zalabová, L.: Parabolic symmetric spaces.Ann. Global Anal. Geom. 37 (2) (2010), 125–141. Zbl 1188.53026, MR 2578261, 10.1007/s10455-009-9177-5
Reference: [9] Zalabová, L.: A non–homogeneous, symmetric contact projective structure.Central European Journal of Mathematics 12 (6) (2014), 879–886. Zbl 1302.53058, MR 3179989
.

Files

Files Size Format View
ArchMathRetro_051-2015-5_5.pdf 491.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo