Title:
|
Relations between constants of motion and conserved functions (English) |
Author:
|
Janyška, Josef |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
51 |
Issue:
|
5 |
Year:
|
2015 |
Pages:
|
297-313 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study relations between functions on the cotangent bundle of a spacetime which are constants of motion for geodesics and functions on the odd-dimensional phase space conserved by the Reeb vector fields of geometrical structures generated by the metric and an electromagnetic field. (English) |
Keyword:
|
phase space |
Keyword:
|
infinitesimal symmetry |
Keyword:
|
hidden symmetry |
Keyword:
|
gravitational contact phase structure |
Keyword:
|
almost-cosymplectic-contact phase structure |
Keyword:
|
Killing multi-vector field |
Keyword:
|
Killing–Maxwell multi-vector field |
Keyword:
|
function constant of motions |
Keyword:
|
conserved function |
MSC:
|
58A20 |
MSC:
|
70G45 |
MSC:
|
70H33 |
MSC:
|
70H40 |
MSC:
|
70H45 |
idZBL:
|
Zbl 06537732 |
idMR:
|
MR3449110 |
DOI:
|
10.5817/AM2015-5-297 |
. |
Date available:
|
2016-01-11T10:09:55Z |
Last updated:
|
2017-02-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144772 |
. |
Reference:
|
[1] Crampin, M.: Hidden symmetries and Killing tensors.Reports Math. Phys. 20 (1984), 31–40. DOI: http://dx.doi.org/10.1016/0034-4877(84)90069-7 Zbl 0551.58019, MR 0761328, 10.1016/0034-4877(84)90069-7 |
Reference:
|
[2] Duval, C., Valent, G.: Quantum integrability of quadratic Killing tensors.J. Math. Phys. 46 (5) (2005), 053516. DOI: http://dx.doi.org/10.1063/1.1899986 Zbl 1110.81116, MR 2143025, 10.1063/1.1899986 |
Reference:
|
[3] Iwai, T.: Symmetries in relativistic dynamics of a charged particle.Ann. Inst. H. Poincaré Sect. A (N.S.) 25 (1976), 335–343. Zbl 0339.53039, MR 0434248 |
Reference:
|
[4] Janyška, J.: Special phase functions and phase infinitesimal symmetries in classical general relativity.AIP Conf. Proc. 1460, XX Internat. Fall Workshop on Geometry and Physics, 2011, pp. 135–140. DOI: http://dx.doi.org/10.1063/1.4733369 10.1063/1.4733369 |
Reference:
|
[5] Janyška, J.: Hidden symmetries of the gravitational contact structure of the classical phase space of general relativistic test particle.Arch. Math. (Brno) 50 (5) (2014), 297–316. DOI: http://dx.doi.org/10.5817/AM2014-5-297 Zbl 1340.70017, MR 3303779, 10.5817/AM2014-5-297 |
Reference:
|
[6] Janyška, J.: Special bracket versus Jacobi bracket on the classical phasespace of general relativistic test particle.Int. J. Geom. Methods Mod. Phys. 11 (7) (2014), 1460020. DOI: http://dx.doi.org/10.1142/S0219887814600202 MR 3249642, 10.1142/S0219887814600202 |
Reference:
|
[7] Janyška, J.: Remarks on infinitesimal symmetries of geometrical structures of the classical phase space of general relativistic test particle.Int. J. Geom. Methods Mod. Phys. 12 (2015), 1560020. DOI: http://dx.doi.org/10.1142/S0219887815600208 MR 3400660, 10.1142/S0219887815600208 |
Reference:
|
[8] Janyška, J., Modugno, M.: Geometric structures of the classical general relativistic phase space.Int. J. Geom. Methods Mod. Phys. 5 (2008), 699–754. DOI: http://dx.doi.org/10.1142/S021988780800303X Zbl 1160.53008, MR 2445392, 10.1142/S021988780800303X |
Reference:
|
[9] Janyška, J., Modugno, M.: Generalized geometrical structures of odd dimensional manifolds.J. Math. Pures Appl. (9) 91 (2009), 211–2332. DOI: http://dx.doi.org/10.1016/j.matpur.2008.09.007 Zbl 1163.53051, MR 2498755, 10.1016/j.matpur.2008.09.007 |
Reference:
|
[10] Janyška, J., Modugno, M., Vitolo, R.: An algebraic approach to physical scales.Acta Appl. Math. 110 (2010), 1249–1276. DOI: http://dx.doi.org/10.1007/s10440-009-9505-6 Zbl 1208.15021, MR 2639169, 10.1007/s10440-009-9505-6 |
Reference:
|
[11] Janyška, J., Vitolo, R.: On the characterization of infinitesimal symmetries of the relativistic phase space.J. Phys. A: Math. Theor. 45 (2012), 485205. DOI: http://dx.doi.org/10.1088/1751-8113/45/48/485205 Zbl 1339.70036, MR 2998421, 10.1088/1751-8113/45/48/485205 |
Reference:
|
[12] Olver, P.: Applications of Lie groups to differential equations.Graduate Texts in Mathematics, vol. 107, Springer, 1986. Zbl 0588.22001, MR 0836734, 10.1007/978-1-4684-0274-2_2 |
Reference:
|
[13] Sommers, P.: On Killing tensors and constant of motions.J. Math. Phys. 14 (1973), 787–790. DOI: http://dx.doi.org/10.1063/1.1666395 MR 0329558, 10.1063/1.1666395 |
. |