Article
Keywords:
porous medium equation; gradient system; fast diffusion; asymptotic behaviour; order preservation
Summary:
We show that the Porous Medium Equation and the Fast Diffusion Equation, $\dot u-\Delta u^m=f$, with $m\in (0,\infty )$, can be modeled as a gradient system in the Hilbert space $H^{-1}(\Omega )$, and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets $\Omega \subseteq \mathbb R^n$ and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions.
References:
[1] Barbu, V.:
Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics Berlin, Springer (2010).
MR 2582280 |
Zbl 1197.35002
[3] Brézis, H.:
Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations. Contrib. nonlin. functional Analysis. Proc. Sympos. Univ. Wisconsin, Madison Academic Press, New York (1971), 101-156 E. Zarantonello.
MR 0394323 |
Zbl 0278.47033
[4] Brézis, H.:
Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland Mathematics Studies Amsterdam-London: North-Holland Publishing Comp.; New York, American Elsevier Publishing Comp. (1973), French.
MR 0348562 |
Zbl 0252.47055
[5] Chill, R., Fašangová, E.: Gradient Systems---13th International Internet Seminar. Matfyzpress Charles University in Prague (2010).
[6] Cioranescu, I.:
Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Mathematics and Its Applications 62 Dordrecht, Kluwer Academic Publishers (1990).
MR 1079061 |
Zbl 0712.47043
[7] Galaktionov, V., Vázquez, J. L.:
A Stability Technique for Evolution Partial Differential Equations. A Dynamical Systems Approach. Progress in Nonlinear Differential Equations and Their Applications 56 Boston, MA: Birkhäuser (2004).
MR 2020328 |
Zbl 1065.35002
[11] Vázquez, J. L.:
The Porous Medium Equation, Mathematical Theory. Oxford Mathematical Monographs; Oxford Science Publications Oxford University Press (2007).
MR 2286292 |
Zbl 1107.35003
[12] Ziemer, W. P.:
Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics 120 Springer (1989).
MR 1014685 |
Zbl 0692.46022