Title:
|
Porous medium equation and fast diffusion equation as gradient systems (English) |
Author:
|
Littig, Samuel |
Author:
|
Voigt, Jürgen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
869-889 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that the Porous Medium Equation and the Fast Diffusion Equation, $\dot u-\Delta u^m=f$, with $m\in (0,\infty )$, can be modeled as a gradient system in the Hilbert space $H^{-1}(\Omega )$, and we obtain existence and uniqueness of solutions in this framework. We deal with bounded and certain unbounded open sets $\Omega \subseteq \mathbb R^n$ and do not require any boundary regularity. Moreover, the approach is used to discuss the asymptotic behaviour and order preservation of solutions. (English) |
Keyword:
|
porous medium equation |
Keyword:
|
gradient system |
Keyword:
|
fast diffusion |
Keyword:
|
asymptotic behaviour |
Keyword:
|
order preservation |
MSC:
|
34G20 |
MSC:
|
35G25 |
MSC:
|
47H99 |
MSC:
|
47J35 |
idZBL:
|
Zbl 06537697 |
idMR:
|
MR3441322 |
DOI:
|
10.1007/s10587-015-0214-1 |
. |
Date available:
|
2016-01-13T09:01:16Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144779 |
. |
Reference:
|
[1] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces.Springer Monographs in Mathematics Berlin, Springer (2010). Zbl 1197.35002, MR 2582280 |
Reference:
|
[2] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems.J. Differ. Equations 250 (2011), 929-948. Zbl 1209.47020, MR 2737819, 10.1016/j.jde.2010.09.009 |
Reference:
|
[3] Brézis, H.: Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations.Contrib. nonlin. functional Analysis. Proc. Sympos. Univ. Wisconsin, Madison Academic Press, New York (1971), 101-156 E. Zarantonello. Zbl 0278.47033, MR 0394323 |
Reference:
|
[4] Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert.North-Holland Mathematics Studies Amsterdam-London: North-Holland Publishing Comp.; New York, American Elsevier Publishing Comp. (1973), French. Zbl 0252.47055, MR 0348562 |
Reference:
|
[5] Chill, R., Fašangová, E.: Gradient Systems---13th International Internet Seminar.Matfyzpress Charles University in Prague (2010). |
Reference:
|
[6] Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems.Mathematics and Its Applications 62 Dordrecht, Kluwer Academic Publishers (1990). Zbl 0712.47043, MR 1079061 |
Reference:
|
[7] Galaktionov, V., Vázquez, J. L.: A Stability Technique for Evolution Partial Differential Equations. A Dynamical Systems Approach.Progress in Nonlinear Differential Equations and Their Applications 56 Boston, MA: Birkhäuser (2004). Zbl 1065.35002, MR 2020328 |
Reference:
|
[8] Otto, F.: The geometry of dissipative evolution equations: the porous medium equation.Commun. Partial Differ. Equations 26 (2001), 101-174. Zbl 0984.35089, MR 1842429, 10.1081/PDE-100002243 |
Reference:
|
[9] Pazy, A.: The Lyapunov method for semigroups of nonlinear contractions in Banach spaces.J. Anal. Math. 40 (1981), 239-262. Zbl 0507.47042, MR 0659793, 10.1007/BF02790164 |
Reference:
|
[10] Souplet, P.: Geometry of unbounded domains, Poincaré inequalities and stability in semilinear parabolic equations.Commun. Partial Differ. Equations 24 (1999), 951-973. Zbl 0926.35064, MR 1680893, 10.1080/03605309908821454 |
Reference:
|
[11] Vázquez, J. L.: The Porous Medium Equation, Mathematical Theory.Oxford Mathematical Monographs; Oxford Science Publications Oxford University Press (2007). Zbl 1107.35003, MR 2286292 |
Reference:
|
[12] Ziemer, W. P.: Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation.Graduate Texts in Mathematics 120 Springer (1989). Zbl 0692.46022, MR 1014685 |
. |