Article
Keywords:
Lehmer number; analytic method; trigonometric sums; asymptotic formula
Summary:
About Lehmer's number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let $p$ be a prime, and let $N(k; p)$ denote the number of all $1 \leq a_i \leq p - 1 $ such that $a_1a_2 \cdots a_k \equiv 1 \mod p$ and $2 \mid a_i + \bar {a}_i + 1,$ $i = 1, 2, \cdots , k$. The main purpose of this paper is using the analytic method, the estimate for character sums and trigonometric sums to study the asymptotic properties of the counting function $N(k; p),$ and give an interesting asymptotic formula for it.
References:
[1] Apostol, T. M.:
Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics Springer, New York (1976).
MR 0434929 |
Zbl 0335.10001
[3] Guy, R. K.:
Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Mathematics, I. Problem Books in Mathematics Springer, New York (1994).
MR 1299330
[4] Maly{š}ev, A. V.:
A generalization of Kloosterman sums and their estimates. Vestnik Leningrad. Univ. 15 (1960), 59-75.
MR 0125084
[6] Weil, A.:
Sur les courbes algébriques et les variétés qui s'en déduisent. Actualités Sci. Ind. 1041, deuxieme partie, \S IV Hermann et Cie., Paris French (1948), Publ. Inst. Math. Univ. Strasbourg, 7 (1945).
Zbl 0036.16001
[8] Zhang, W.:
A problem of D. H. Lehmer and its mean square value formula. Japan J. Math., New Ser. 29 (2003), 109-116.
MR 1986866 |
Zbl 1127.11338
[9] Zhang, W.:
A problem of D. H. Lehmer and its generalization. II. Compos. Math. 91 (1994), 47-56.
MR 1273925 |
Zbl 0798.11001
[10] Zhang, W.:
On a problem of D. H. Lehmer and its generalization. Compos. Math. 86 (1993), 307-316.
MR 1219630 |
Zbl 0783.11003