Title:
|
Some new sums related to D. H. Lehmer problem (English) |
Author:
|
Zhang, Han |
Author:
|
Zhang, Wenpeng |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
915-922 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
About Lehmer's number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let $p$ be a prime, and let $N(k; p)$ denote the number of all $1 \leq a_i \leq p - 1 $ such that $a_1a_2 \cdots a_k \equiv 1 \mod p$ and $2 \mid a_i + \bar {a}_i + 1,$ $i = 1, 2, \cdots , k$. The main purpose of this paper is using the analytic method, the estimate for character sums and trigonometric sums to study the asymptotic properties of the counting function $N(k; p),$ and give an interesting asymptotic formula for it. (English) |
Keyword:
|
Lehmer number |
Keyword:
|
analytic method |
Keyword:
|
trigonometric sums |
Keyword:
|
asymptotic formula |
MSC:
|
11L05 |
MSC:
|
11L40 |
idZBL:
|
Zbl 06537700 |
idMR:
|
MR3441325 |
DOI:
|
10.1007/s10587-015-0217-y |
. |
Date available:
|
2016-01-13T09:04:38Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144782 |
. |
Reference:
|
[1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics Springer, New York (1976). Zbl 0335.10001, MR 0434929 |
Reference:
|
[2] Chowla, S.: On Kloosterman's sum.Norske Vid. Selsk. Forhdl. 40 (1967), 70-72. Zbl 0157.09001, MR 0228452 |
Reference:
|
[3] Guy, R. K.: Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Mathematics, I.Problem Books in Mathematics Springer, New York (1994). MR 1299330 |
Reference:
|
[4] Maly{š}ev, A. V.: A generalization of Kloosterman sums and their estimates.Vestnik Leningrad. Univ. 15 (1960), 59-75. MR 0125084 |
Reference:
|
[5] Pan, C., Pan, C.: Goldbach Conjecture.Science Press, Beijing (1992). Zbl 0849.11080, MR 1287852 |
Reference:
|
[6] Weil, A.: Sur les courbes algébriques et les variétés qui s'en déduisent.Actualités Sci. Ind. 1041, deuxieme partie, \S IV Hermann et Cie., Paris French (1948), Publ. Inst. Math. Univ. Strasbourg, 7 (1945). Zbl 0036.16001 |
Reference:
|
[7] Zhang, W.: A mean value related to D. H. Lehmer's problem and the Ramanujan's sum.Glasg. Math. J. 54 (2012), 155-162. Zbl 1303.11095, MR 2862393, 10.1017/S0017089511000498 |
Reference:
|
[8] Zhang, W.: A problem of D. H. Lehmer and its mean square value formula.Japan J. Math., New Ser. 29 (2003), 109-116. Zbl 1127.11338, MR 1986866 |
Reference:
|
[9] Zhang, W.: A problem of D. H. Lehmer and its generalization. II.Compos. Math. 91 (1994), 47-56. Zbl 0798.11001, MR 1273925 |
Reference:
|
[10] Zhang, W.: On a problem of D. H. Lehmer and its generalization.Compos. Math. 86 (1993), 307-316. Zbl 0783.11003, MR 1219630 |
. |