Previous |  Up |  Next

Article

Title: Some new sums related to D. H. Lehmer problem (English)
Author: Zhang, Han
Author: Zhang, Wenpeng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 915-922
Summary lang: English
.
Category: math
.
Summary: About Lehmer's number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let $p$ be a prime, and let $N(k; p)$ denote the number of all $1 \leq a_i \leq p - 1 $ such that $a_1a_2 \cdots a_k \equiv 1 \mod p$ and $2 \mid a_i + \bar {a}_i + 1,$ $i = 1, 2, \cdots , k$. The main purpose of this paper is using the analytic method, the estimate for character sums and trigonometric sums to study the asymptotic properties of the counting function $N(k; p),$ and give an interesting asymptotic formula for it. (English)
Keyword: Lehmer number
Keyword: analytic method
Keyword: trigonometric sums
Keyword: asymptotic formula
MSC: 11L05
MSC: 11L40
idZBL: Zbl 06537700
idMR: MR3441325
DOI: 10.1007/s10587-015-0217-y
.
Date available: 2016-01-13T09:04:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144782
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics Springer, New York (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Chowla, S.: On Kloosterman's sum.Norske Vid. Selsk. Forhdl. 40 (1967), 70-72. Zbl 0157.09001, MR 0228452
Reference: [3] Guy, R. K.: Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Mathematics, I.Problem Books in Mathematics Springer, New York (1994). MR 1299330
Reference: [4] Maly{š}ev, A. V.: A generalization of Kloosterman sums and their estimates.Vestnik Leningrad. Univ. 15 (1960), 59-75. MR 0125084
Reference: [5] Pan, C., Pan, C.: Goldbach Conjecture.Science Press, Beijing (1992). Zbl 0849.11080, MR 1287852
Reference: [6] Weil, A.: Sur les courbes algébriques et les variétés qui s'en déduisent.Actualités Sci. Ind. 1041, deuxieme partie, \S IV Hermann et Cie., Paris French (1948), Publ. Inst. Math. Univ. Strasbourg, 7 (1945). Zbl 0036.16001
Reference: [7] Zhang, W.: A mean value related to D. H. Lehmer's problem and the Ramanujan's sum.Glasg. Math. J. 54 (2012), 155-162. Zbl 1303.11095, MR 2862393, 10.1017/S0017089511000498
Reference: [8] Zhang, W.: A problem of D. H. Lehmer and its mean square value formula.Japan J. Math., New Ser. 29 (2003), 109-116. Zbl 1127.11338, MR 1986866
Reference: [9] Zhang, W.: A problem of D. H. Lehmer and its generalization. II.Compos. Math. 91 (1994), 47-56. Zbl 0798.11001, MR 1273925
Reference: [10] Zhang, W.: On a problem of D. H. Lehmer and its generalization.Compos. Math. 86 (1993), 307-316. Zbl 0783.11003, MR 1219630
.

Files

Files Size Format View
CzechMathJ_65-2015-4_5.pdf 230.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo