Previous |  Up |  Next

Article

Title: Order complex of ideals in a commutative ring with identity (English)
Author: Milošević, Nela
Author: Petrović, Zoran Z.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 947-952
Summary lang: English
.
Category: math
.
Summary: Order complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when it is homotopy equivalent to a sphere. (English)
Keyword: ideal
Keyword: commutative ring
Keyword: order complex
Keyword: homotopy type
MSC: 05E40
MSC: 06A07
MSC: 13A99
MSC: 55P15
idZBL: Zbl 06537702
idMR: MR3441327
DOI: 10.1007/s10587-015-0219-9
.
Date available: 2016-01-13T09:06:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144784
.
Reference: [1] Clark, E., Ehrenborg, R.: The Frobenius complex.Ann. Comb. 16 (2012), 215-232. Zbl 1302.06003, MR 2927604, 10.1007/s00026-012-0127-8
Reference: [2] Hatcher, A.: Algebraic Topology.Cambridge University Press Cambridge (2002). Zbl 1044.55001, MR 1867354
Reference: [3] Hersh, P., Shareshian, J.: Chains of modular elements and lattice connectivity.Order 23 (2006), 339-342. Zbl 1118.06002, MR 2309698, 10.1007/s11083-006-9053-x
Reference: [4] Kozlov, D.: Combinatorial Algebraic Topology.Algorithms and Computation in Mathematics 21 Springer, Berlin (2008). Zbl 1157.57300, MR 2361455
Reference: [5] Margolis, S. W., Saliola, F., Steinberg, B.: Combinatorial topology and the global dimension of algebras arising in combinatorics.J. Eur. Math. Soc. 17 (2015), 3037-3080. MR 3429159, 10.4171/JEMS/579
Reference: [6] Meshulam, R.: On the homological dimension of lattices.Order 25 (2008), 153-155. Zbl 1159.06006, MR 2425950, 10.1007/s11083-008-9086-4
Reference: [7] Munkres, J. R.: Elements of Algebraic Topology.Advanced Book Program Addison-Wesley Publishing Company, Menlo Park, California (1984). Zbl 0673.55001, MR 0755006
Reference: [8] Patassini, M.: On the (non-)contractibility of the order complex of the coset poset of an alternating group.J. Algebra 343 (2011), 37-77. MR 2824544, 10.1016/j.jalgebra.2011.05.042
Reference: [9] Shareshian, J., Woodroofe, R.: Order complexes of coset posets of finite groups are not contractible.(to appear) in Adv. Math.
Reference: [10] Shelton, B.: Splitting Algebras II: The Cohomology Algebra.(to appear) in arXiv:1208. 2202.
Reference: [11] Vassiliev, V. A.: Topology of discriminants and their complements.Proc. of the International Congress of Mathematicians, ICM'94, 1994, Zürich, Switzerland. Vol. I, II S. D. Chatterji Birkhäuser Basel (1995), 209-226. Zbl 0852.55003, MR 1403923
Reference: [12] Wachs, M. L.: Poset topology: tools and applications.Geometric Combinatorics E. Miller et al. IAS/Park City Math. Ser. 13 American Mathematical Society; Princeton: Institute for Advanced Studies, Providence (2007), 497-615. Zbl 1135.06001, MR 2383132
.

Files

Files Size Format View
CzechMathJ_65-2015-4_7.pdf 234.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo