Title:
|
Order complex of ideals in a commutative ring with identity (English) |
Author:
|
Milošević, Nela |
Author:
|
Petrović, Zoran Z. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
947-952 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Order complex is an important object associated to a partially ordered set. Following a suggestion from V. A. Vassiliev (1994), we investigate an order complex associated to the partially ordered set of nontrivial ideals in a commutative ring with identity. We determine the homotopy type of the geometric realization for the order complex associated to a general commutative ring with identity. We show that this complex is contractible except for semilocal rings with trivial Jacobson radical when it is homotopy equivalent to a sphere. (English) |
Keyword:
|
ideal |
Keyword:
|
commutative ring |
Keyword:
|
order complex |
Keyword:
|
homotopy type |
MSC:
|
05E40 |
MSC:
|
06A07 |
MSC:
|
13A99 |
MSC:
|
55P15 |
idZBL:
|
Zbl 06537702 |
idMR:
|
MR3441327 |
DOI:
|
10.1007/s10587-015-0219-9 |
. |
Date available:
|
2016-01-13T09:06:37Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144784 |
. |
Reference:
|
[1] Clark, E., Ehrenborg, R.: The Frobenius complex.Ann. Comb. 16 (2012), 215-232. Zbl 1302.06003, MR 2927604, 10.1007/s00026-012-0127-8 |
Reference:
|
[2] Hatcher, A.: Algebraic Topology.Cambridge University Press Cambridge (2002). Zbl 1044.55001, MR 1867354 |
Reference:
|
[3] Hersh, P., Shareshian, J.: Chains of modular elements and lattice connectivity.Order 23 (2006), 339-342. Zbl 1118.06002, MR 2309698, 10.1007/s11083-006-9053-x |
Reference:
|
[4] Kozlov, D.: Combinatorial Algebraic Topology.Algorithms and Computation in Mathematics 21 Springer, Berlin (2008). Zbl 1157.57300, MR 2361455 |
Reference:
|
[5] Margolis, S. W., Saliola, F., Steinberg, B.: Combinatorial topology and the global dimension of algebras arising in combinatorics.J. Eur. Math. Soc. 17 (2015), 3037-3080. MR 3429159, 10.4171/JEMS/579 |
Reference:
|
[6] Meshulam, R.: On the homological dimension of lattices.Order 25 (2008), 153-155. Zbl 1159.06006, MR 2425950, 10.1007/s11083-008-9086-4 |
Reference:
|
[7] Munkres, J. R.: Elements of Algebraic Topology.Advanced Book Program Addison-Wesley Publishing Company, Menlo Park, California (1984). Zbl 0673.55001, MR 0755006 |
Reference:
|
[8] Patassini, M.: On the (non-)contractibility of the order complex of the coset poset of an alternating group.J. Algebra 343 (2011), 37-77. MR 2824544, 10.1016/j.jalgebra.2011.05.042 |
Reference:
|
[9] Shareshian, J., Woodroofe, R.: Order complexes of coset posets of finite groups are not contractible.(to appear) in Adv. Math. |
Reference:
|
[10] Shelton, B.: Splitting Algebras II: The Cohomology Algebra.(to appear) in arXiv:1208. 2202. |
Reference:
|
[11] Vassiliev, V. A.: Topology of discriminants and their complements.Proc. of the International Congress of Mathematicians, ICM'94, 1994, Zürich, Switzerland. Vol. I, II S. D. Chatterji Birkhäuser Basel (1995), 209-226. Zbl 0852.55003, MR 1403923 |
Reference:
|
[12] Wachs, M. L.: Poset topology: tools and applications.Geometric Combinatorics E. Miller et al. IAS/Park City Math. Ser. 13 American Mathematical Society; Princeton: Institute for Advanced Studies, Providence (2007), 497-615. Zbl 1135.06001, MR 2383132 |
. |