Title:
|
$n$-angulated quotient categories induced by mutation pairs (English) |
Author:
|
Lin, Zengqiang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
65 |
Issue:
|
4 |
Year:
|
2015 |
Pages:
|
953-968 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Geiss, Keller and Oppermann (2013) introduced the notion of \mbox {$n$-angulated} category, which is a ``higher dimensional'' analogue of triangulated category, and showed that certain $(n-2)$-cluster tilting subcategories of triangulated categories give rise to \mbox {$n$-angulated} categories. We define mutation pairs in \mbox {$n$-angulated} categories and prove that given such a mutation pair, the corresponding quotient category carries a natural \mbox {$n$-angulated} structure. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories. (English) |
Keyword:
|
\mbox {$n$-angulated} category |
Keyword:
|
quotient category |
Keyword:
|
mutation pair |
MSC:
|
18E30 |
idZBL:
|
Zbl 06537703 |
idMR:
|
MR3441328 |
DOI:
|
10.1007/s10587-015-0220-3 |
. |
Date available:
|
2016-01-13T09:07:49Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144785 |
. |
Reference:
|
[1] Bergh, P. A., Thaule, M.: The Grothendieck group of an $n$-angulated category.J. Pure Appl. Algebra 218 (2014), 354-366. Zbl 1291.18015, MR 3120636, 10.1016/j.jpaa.2013.06.007 |
Reference:
|
[2] Bergh, P. A., Jasso, G., Thaule, M.: Higher \mbox{$n$-angulations} from local rings.(to appear) in J. Lond. Math. Soc. arXiv:1311.2089v2[math.CT] (2013). MR 3073923 |
Reference:
|
[3] Bergh, P. A., Thaule, M.: The axioms for {$n$}-angulated categories.Algebr. Geom. Topol. 13 (2013), 2405-2428. Zbl 1272.18008, MR 3073923, 10.2140/agt.2013.13.2405 |
Reference:
|
[4] Geiss, C., Keller, B., Oppermann, S.: {$n$}-angulated categories.J. Reine Angew. Math. 675 (2013), 101-120. Zbl 1271.18013, MR 3021448 |
Reference:
|
[5] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras.London Mathematical Society Lecture Note Series 119 Cambridge University Press, Cambridge (1988). Zbl 0635.16017, MR 0935124 |
Reference:
|
[6] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules.Invent. Math. 172 (2008), 117-168. Zbl 1140.18007, MR 2385669, 10.1007/s00222-007-0096-4 |
Reference:
|
[7] Jasso, G.: \mbox{$n$-abelian} and \mbox{$n$-exact} categories.arXiv:1405.7805v2[math.CT] (2014). MR 3519980 |
Reference:
|
[8] J{ørgensen, P.: Torsion classes and $t$-structures in higher homological algebra.Int. Math. Res. Not. (2015), doi:10.1093/imrn/rnv265. MR 3544623, 10.1093/imrn/rnv265 |
Reference:
|
[9] Puppe, D.: On the formal structure of stable homotopy theory.Colloquium on Algebraic Topology Lectures Matematisk Institut, Aarhus Universitet, Aarhus (1962), 65-71. Zbl 0139.41106 |
Reference:
|
[10] Verdier, J.-L.: Catégories dérivées. Quelques résultats (État O).Semin. Geom. Algebr. Bois-Marie, SGA 4 1/2, Lect. Notes Math. 569 Springer, New York French (1977). Zbl 0407.18008 |
. |