Previous |  Up |  Next

Article

Title: $n$-angulated quotient categories induced by mutation pairs (English)
Author: Lin, Zengqiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 953-968
Summary lang: English
.
Category: math
.
Summary: Geiss, Keller and Oppermann (2013) introduced the notion of \mbox {$n$-angulated} category, which is a ``higher dimensional'' analogue of triangulated category, and showed that certain $(n-2)$-cluster tilting subcategories of triangulated categories give rise to \mbox {$n$-angulated} categories. We define mutation pairs in \mbox {$n$-angulated} categories and prove that given such a mutation pair, the corresponding quotient category carries a natural \mbox {$n$-angulated} structure. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories. (English)
Keyword: \mbox {$n$-angulated} category
Keyword: quotient category
Keyword: mutation pair
MSC: 18E30
idZBL: Zbl 06537703
idMR: MR3441328
DOI: 10.1007/s10587-015-0220-3
.
Date available: 2016-01-13T09:07:49Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144785
.
Reference: [1] Bergh, P. A., Thaule, M.: The Grothendieck group of an $n$-angulated category.J. Pure Appl. Algebra 218 (2014), 354-366. Zbl 1291.18015, MR 3120636, 10.1016/j.jpaa.2013.06.007
Reference: [2] Bergh, P. A., Jasso, G., Thaule, M.: Higher \mbox{$n$-angulations} from local rings.(to appear) in J. Lond. Math. Soc. arXiv:1311.2089v2[math.CT] (2013). MR 3073923
Reference: [3] Bergh, P. A., Thaule, M.: The axioms for {$n$}-angulated categories.Algebr. Geom. Topol. 13 (2013), 2405-2428. Zbl 1272.18008, MR 3073923, 10.2140/agt.2013.13.2405
Reference: [4] Geiss, C., Keller, B., Oppermann, S.: {$n$}-angulated categories.J. Reine Angew. Math. 675 (2013), 101-120. Zbl 1271.18013, MR 3021448
Reference: [5] Happel, D.: Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras.London Mathematical Society Lecture Note Series 119 Cambridge University Press, Cambridge (1988). Zbl 0635.16017, MR 0935124
Reference: [6] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules.Invent. Math. 172 (2008), 117-168. Zbl 1140.18007, MR 2385669, 10.1007/s00222-007-0096-4
Reference: [7] Jasso, G.: \mbox{$n$-abelian} and \mbox{$n$-exact} categories.arXiv:1405.7805v2[math.CT] (2014). MR 3519980
Reference: [8] J{ørgensen, P.: Torsion classes and $t$-structures in higher homological algebra.Int. Math. Res. Not. (2015), doi:10.1093/imrn/rnv265. MR 3544623, 10.1093/imrn/rnv265
Reference: [9] Puppe, D.: On the formal structure of stable homotopy theory.Colloquium on Algebraic Topology Lectures Matematisk Institut, Aarhus Universitet, Aarhus (1962), 65-71. Zbl 0139.41106
Reference: [10] Verdier, J.-L.: Catégories dérivées. Quelques résultats (État O).Semin. Geom. Algebr. Bois-Marie, SGA 4 1/2, Lect. Notes Math. 569 Springer, New York French (1977). Zbl 0407.18008
.

Files

Files Size Format View
CzechMathJ_65-2015-4_8.pdf 296.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo