Previous |  Up |  Next

Article

Title: Fermat test with Gaussian base and Gaussian pseudoprimes (English)
Author: Grau, José María
Author: Oller-Marcén, Antonio M.
Author: Rodríguez, Manuel
Author: Sadornil, Daniel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 969-982
Summary lang: English
.
Category: math
.
Summary: The structure of the group $(\mathbb {Z}/n\mathbb {Z})^\star $ and Fermat's little theorem are the basis for some of the best-known primality testing algorithms. Many related concepts arise: Euler's totient function and Carmichael's lambda function, Fermat pseudoprimes, Carmichael and cyclic numbers, Lehmer's totient problem, Giuga's conjecture, etc. In this paper, we present and study analogues to some of the previous concepts arising when we consider the underlying group $\mathcal {G}_n:=\{a+b{\rm i}\in \mathbb {Z}[{\rm i}]/n\mathbb {Z}[{\rm i}]\colon a^2+b^2\equiv 1\pmod n\}$. In particular, we characterize Gaussian Carmichael numbers via a Korselt's criterion and present their relation with Gaussian cyclic numbers. Finally, we present the relation between Gaussian Carmichael number and 1-Williams numbers for numbers $n \equiv 3\pmod 4$. There are also no known composite numbers less than $10^{18}$ in this family that are both pseudoprime to base $1+2{\rm i}$ and 2-pseudoprime. (English)
Keyword: Gaussian integer
Keyword: Fermat test
Keyword: pseudoprime
MSC: 11A25
MSC: 11A51
MSC: 11D45
idZBL: Zbl 06537704
idMR: MR3441329
DOI: 10.1007/s10587-015-0221-2
.
Date available: 2016-01-13T09:09:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144786
.
Reference: [1] Alford, W. R., Granville, A., Pomerance, C.: There are infinitely many Carmichael numbers.Ann. Math. (2) 139 (1994), 703-722. Zbl 0816.11005, MR 1283874
Reference: [2] Borwein, D., Maitland, C., Skerritt, M.: Computation of an improved lower bound to Giuga's primality conjecture.Integers (electronic only) 13 (2013), Paper A67, 14 pages. Zbl 1284.11002, MR 3118385
Reference: [3] Burcsi, P., Czirbusz, S., Farkas, G.: Computational investigation of Lehmer's totient problem.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 35 (2011), 43-49. Zbl 1240.11005, MR 2894552
Reference: [4] Carmichael, R. D.: Note on a new number theory function.Amer. Math. Soc. Bull. (2) 16 (1910), 232-238. MR 1558896, 10.1090/S0002-9904-1910-01892-9
Reference: [5] Cross, J. T.: The Euler $\phi$-function in the Gaussian integers.Am. Math. Mon. 90 (1983), 518-528. Zbl 0525.12001, MR 0717096, 10.2307/2322785
Reference: [6] Echi, O.: Williams numbers.C. R. Math. Acad. Sci., Soc. R. Can. 29 (2007), 41-47. Zbl 1204.11185, MR 2367725
Reference: [7] Galway, W.: Tables of pseudoprimes and related data. http://www.cecm.sfu.ca/Pseudoprimes/..
Reference: [8] Giuga, G.: Su una presumibile proprietà caratteristica dei numeri primi.Ist. Lombardo Sci. Lett., Rend., Cl. Sci. Mat. Natur. (3) 14 (1951), 511-528 Italian. Zbl 0045.01801, MR 0046381
Reference: [9] Goldman, J. R.: Numbers of solutions of congruences: Poincaré series for strongly nondegenerate forms.Proc. Am. Math. Soc. 87 (1983), 586-590. Zbl 0511.12014, MR 0687622
Reference: [10] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers.Oxford University Press Oxford (2008). Zbl 1159.11001, MR 2445243
Reference: [11] Lehmer, D. H.: On Euler's totient function.Bull. Am. Math. Soc. 38 (1932), 745-751. Zbl 0005.34302, MR 1562500, 10.1090/S0002-9904-1932-05521-5
Reference: [12] Lemmermeyer, F.: Conics---a poor man's elliptic curves.Preprint at http://www.fen.bilkent.edu.tr/ {franz/publ/conics.pdf} arXiv:math/0311306v1[math.NT].
Reference: [13] Pinch, R. G. E.: Absolute quadratic pseudoprimes.Proc. of Conf. on Algorithmic Number Theory. TUCS General Publications 46 A.-M. Ernvall-Hytönen at al. (2007), 113-128. http://tucs.fi/publications/view/?id=pErJuKaLe07a&table=proceeding.
Reference: [14] C. Pomerance, J. L. Selfridge, S. S. Wagstaff, Jr.: The pseudoprimes to $25\cdot 10^9$.Math. Comput. 35 (1980), 1003-1026. Zbl 0444.10007, MR 0572872
Reference: [15] Schettler, J.: Lehmer's totient problem and Carmichael numbers in a PID. http://math.ucsb.edu/ {jcs/Schettler.pdf}..
Reference: [16] Silverman, J. H.: Elliptic Carmichael numbers and elliptic Korselt criteria.Acta Arith. 155 (2012), 233-246. Zbl 1304.11047, MR 2983450, 10.4064/aa155-3-1
Reference: [17] Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences.http://www.oeis.org. Zbl 1159.11327
Reference: [18] Steele, G. A.: Carmichael numbers in number rings.J. Number Theory 128 (2008), 910-917. Zbl 1176.11049, MR 2400049, 10.1016/j.jnt.2007.08.009
Reference: [19] Szele, T.: Über die endlichen Ordnungszahlen zu denen nur eine Gruppe gehört.Comment. Math. Helv. 20 (1947), 265-267 German. Zbl 0034.30502, MR 0021934, 10.1007/BF02568132
Reference: [20] Tarry, G., Franel, I., Korselt, A. R., Vacca, G.: Problème chinois.L'intermédiaire des mathématiciens 6 (1899), 142-144 French www.oeis.org/wiki/File:Problème\_chinois.pdf.
Reference: [21] Williams, H. C.: On numbers analogous to the Carmichael numbers.Can. Math. Bull. 20 (1977), 133-143. Zbl 0368.10011, MR 0447099, 10.4153/CMB-1977-025-9
.

Files

Files Size Format View
CzechMathJ_65-2015-4_9.pdf 292.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo