Title:
|
On the equivalence of control systems on Lie groups (English) |
Author:
|
Biggs, Rory |
Author:
|
Remsing, Claudiu C. |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 |
Volume:
|
23 |
Issue:
|
2 |
Year:
|
2015 |
Pages:
|
119-129 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided. (English) |
Keyword:
|
left-invariant control system |
Keyword:
|
state space equivalence |
Keyword:
|
detached feedback equivalence |
MSC:
|
22E60 |
MSC:
|
93B27 |
idZBL:
|
Zbl 1338.93118 |
idMR:
|
MR3436680 |
. |
Date available:
|
2016-01-19T13:48:41Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144801 |
. |
Reference:
|
[1] Adams, R.M., Biggs, R., Remsing, C.C.: Equivalence of control systems on the Euclidean group SE(2).Control Cybernet., 41, 2012, 513-524, Zbl 1318.93028, MR 3087026 |
Reference:
|
[2] Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometric Viewpoint.2004, Springer Science & Business Media, Zbl 1062.93001, MR 2062547 |
Reference:
|
[3] Biggs, R., Remsing, C.C.: A category of control systems.An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368, Zbl 1274.93062, MR 2928428 |
Reference:
|
[4] Biggs, R., Remsing, C.C.: Control affine systems on semisimple three-dimensional Lie groups. An. Şt. Univ. “A.I. Cuza” Iaşi. Ser. Mat., 59, 2013, 399-414, Zbl 1299.93049, MR 3252448 |
Reference:
|
[5] Biggs, R., Remsing, C.C.: Control affine systems on solvable three-dimensional Lie groups, I.Arch. Math. (Brno), 49, 2013, 187-197, Zbl 1299.93050, MR 3144181, 10.5817/AM2013-3-187 |
Reference:
|
[6] Biggs, R., Remsing, C.C.: Control affine systems on solvable three-dimensional Lie groups, II.Note Mat., 33, 2013, 19-31, Zbl 1287.93022, MR 3178571 |
Reference:
|
[7] Brockett, R.W.: System theory on group manifolds and coset spaces.SIAM J. Control, 10, 1972, 265-284, Zbl 0253.93003, MR 0315559, 10.1137/0310021 |
Reference:
|
[8] Elkin, V.I.: Affine control systems: their equivalence, classification, quotient systems, and subsystems.J. Math. Sci., 88, 1998, 675-721, Zbl 0953.93020, MR 1613095, 10.1007/BF02364666 |
Reference:
|
[9] Gardner, R.B., Shadwick, W.F.: Feedback equivalence of control systems.Systems Control Lett., 8, 1987, 463-465, Zbl 0691.93023, MR 0890084 |
Reference:
|
[10] Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Foundations of Lie Theory and Lie Transformation Groups.1997, Springer Science & Business Media, Zbl 0999.17500, MR 1631937 |
Reference:
|
[11] Jakubczyk, B.: Equivalence and invariants of nonlinear control systems.Nonlinear Controllability and Optimal Control , 1990, 177-218, Marcel Dekker, In: H.J. Sussmann (ed.). Zbl 0712.93027, MR 1061386 |
Reference:
|
[12] Jakubczyk, B.: Critical {H}amiltonians and feedback invariants.Geometry of Feedback and Optimal Control , 1998, 219-256, Marcel Dekker, In: B. Jakubczyk, W. Respondek (eds.). Zbl 0925.93136, MR 1493015 |
Reference:
|
[13] Jakubczyk, B., Respondek, W.: On linearization of control systems.Bull. Acad. Polon. Sci. Ser. Sci. Math., 28, 1980, 517-522, Zbl 0489.93023, MR 0629027 |
Reference:
|
[14] Jurdjevic, V.: Geometric Control Theory.1997, Cambridge University Press, Zbl 0940.93005, MR 1425878 |
Reference:
|
[15] Jurdjevic, V., Sussmann, H.J.: Control systems on Lie groups.J. Diff. Equations, 12, 1972, 313-329, Zbl 0237.93027, MR 0331185, 10.1016/0022-0396(72)90035-6 |
Reference:
|
[16] Krener, A.J.: On the equivalence of control systems and the linearization of nonlinear systems.SIAM J. Control, 11, 1973, 670-676, Zbl 0243.93009, MR 0343967, 10.1137/0311051 |
Reference:
|
[17] Remsing, C.C.: Optimal control and Hamilton-Poisson formalism.Int. J. Pure Appl. Math., 59, 2010, 11-17, Zbl 1206.49006, MR 2642777 |
Reference:
|
[18] Respondek, W., Tall, I.A.: Feedback equivalence of nonlinear control systems: a survey on formal approach.Chaos in Automatic Control, 2006, 137-262, In: W. Perruquetti, J.-P. Barbot (eds.). Zbl 1203.93039, MR 2283271 |
Reference:
|
[19] Sachkov, Y.L.: Control theory on Lie groups.J. Math. Sci., 156, 2009, 381-439, Zbl 1211.93038, MR 2373391, 10.1007/s10958-008-9275-0 |
Reference:
|
[20] Sussmann, H.J.: An extension of a theorem of Nagano on transitive Lie algebras.Proc. Amer. Math. Soc., 45, 1974, 349-356, Zbl 0301.58003, MR 0356116, 10.1090/S0002-9939-1974-0356116-6 |
Reference:
|
[21] Sussmann, H.J.: Lie brackets, real analyticity and geometric control.Differential Geometric Control Theory, 1983, 1-116, Birkhäuser, In: R.W. Brockett, R.S. Millman, H.J. Sussmann (eds.). Zbl 0545.93002, MR 0708500 |
. |