Previous |  Up |  Next

Article

Title: On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$ (English)
Author: Jena, Susil Kumar
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 23
Issue: 2
Year: 2015
Pages: 113-117
Summary lang: English
.
Category: math
.
Summary: The two related Diophantine equations: $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$, have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations. (English)
Keyword: Diophantine equation $A^4+nB^4=C^2$
Keyword: Diophantine equation $A^4-nB^4=C^2$
Keyword: Diophantine equation $X_1^4+4X_2^4=X_3^8+4X_4^8$
Keyword: Diophantine equation $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$
MSC: 11D41
MSC: 11D72
idZBL: Zbl 1350.11045
idMR: MR3436679
.
Date available: 2016-01-19T13:46:51Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144800
.
Reference: [1] Choudhry, A.: The Diophantine equation $A^4 + 4B^4 = C^4+4D^4$.Indian J. Pure Appl. Math., 29, 1998, 1127-1128, Zbl 0923.11050, MR 1672759
Reference: [2] Dickson, L. E.: History of the Theory of Numbers.2, 1952, Chelsea Publishing Company, New York,
Reference: [3] Guy, R. K.: Unsolved Problems in Number Theory.2004, Springer Science+Business Media Inc., New York, Third Edition. Zbl 1058.11001, MR 2076335
Reference: [4] Jena, S. K.: Beyond the Method of Infinite Descent.J. Comb. Inf. Syst. Sci., 35, 2010, 501-511,
.

Files

Files Size Format View
ActaOstrav_23-2015-2_2.pdf 465.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo