Previous |  Up |  Next

Article

Title: Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances (English)
Author: Ou, Meiying
Author: Gu, Shengwei
Author: Wang, Xianbing
Author: Dong, Kexiu
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 6
Year: 2015
Pages: 1049-1067
Summary lang: English
.
Category: math
.
Summary: This paper investigates finite-time tracking control problem of multiple nonholonomic mobile robots in dynamic model with external disturbances, where a kind of finite-time disturbance observer (FTDO) is introduced to estimate the external disturbances for each mobile robot. First of all, the resulting tracking error dynamic is transformed into two subsystems, i. e., a third-order subsystem and a second-order subsystem for each mobile robot. Then, the two subsystem are discussed respectively, continuous finite-time disturbance observers and finite-time tracking control laws are designed for each mobile robot. Rigorous proof shows that each mobile robot can track the desired trajectory in finite time. Simulation example illustrates the effectiveness of our method. (English)
Keyword: finite-time tracking control
Keyword: finite-time disturbance observer
Keyword: external disturbances
Keyword: nonholonomic mobile robot
Keyword: dynamic model
MSC: 93A14
MSC: 93D15
MSC: 93D21
idZBL: Zbl 06537795
idMR: MR3453685
DOI: 10.14736/kyb-2015-6-1049
.
Date available: 2016-01-21T18:35:30Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144824
.
Reference: [1] Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems..SIAM J. Control Optim. 38 (2000), 751-766. Zbl 0945.34039, MR 1756893, 10.1137/s0363012997321358
Reference: [2] Chen, W.: Disturbance observer based control for nonlinear systems..IEEE/ASME Trans. Mechatronics 9 (2004), 706-710. 10.1109/tmech.2004.839034
Reference: [3] Chen, W., Ballance, D., Gawthrop, P., O'Reilly, J.: A nonlinear disturbance observer for robotic manipulators..IEEE Trans. Ind. Electron. 47 (2000), 932-938. 10.1109/41.857974
Reference: [4] Ding, S., Wang, J., Zheng, W.: Second-order sliding mode control for nonlinear uncertain systems bounded by positive functions..IEEE Trans. Ind. Electron. 62 (2015), 5899-5909. 10.1109/tie.2015.2448064
Reference: [5] Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots..IEEE Trans. Robot. Automat. Control 17 (2001), 905-908. 10.1109/70.976023
Reference: [6] Dong, W.: Robust formation control of multiple wheeled mobile robots..J. Intel. Robot. Syst.: Theory and Appl. 62 (2011), 547-565. Zbl 1245.93085, 10.1007/s10846-010-9451-6
Reference: [7] Dong, W., Farrell, J.: Cooperative control of multiple nonholonomic mobile agents..IEEE Trans. Automat. Control 53 (2008), 1434-1448. MR 2451233, 10.1109/tac.2008.925852
Reference: [8] Dong, W., Farrell, J.: Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty..Automatica 45 (2009), 706-710. Zbl 1166.93302, MR 2527253, 10.1016/j.automatica.2008.09.015
Reference: [9] Du, H., He, Y., Cheng, Y.: Finite-time cooperative tracking control for a class of second-order nonlinear multi-agent systems..Kybernetika 49 (2013), 507-523. Zbl 1274.93008, MR 3117911
Reference: [10] Guo, L., Chen, W.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach..Int. J. Robust Nonlin. Control 15 (2005), 109-125. Zbl 1078.93030, MR 2117031, 10.1002/rnc.978
Reference: [11] Hardy, G., Littlewood, J., Polya, G.: Inequalities..Cambridge University Press, Cambridge 1952. Zbl 0634.26008, MR 0046395
Reference: [12] Ou, M., Du, H., Li, S.: Finite-time formation control of multiple nonholonomic mobile robots..Int. J. Robust Nonlin. Control 24 (2014), 140-165. Zbl 1278.93173, MR 3149291, 10.1002/rnc.2880
Reference: [13] Jiang, Z., Nijmeijer, H.: Tracking control of mobile robots: a case study in backstepping..Automatica 33 (1997), 1393-1399. Zbl 0882.93057, MR 1467813
Reference: [14] Justh, E., Krishnaprasad, P.: Equilibrium and steering laws for planar formations..Syst. Control Lett. 52 (2004), 25-38. MR 2050451, 10.1016/j.sysconle.2003.10.004
Reference: [15] Li, S., Du, H., Lin, X.: Finite time consensus algorithm for multi-agent systems with double-integrator dynamics..Automatica 47 (2011), 1706-1712. Zbl 1226.93014, MR 2886774, 10.1016/j.automatica.2011.02.045
Reference: [16] Lin, Z., Francis, B., Maggiore, M.: Necessary and sufficient graphical conditions for formation control of unicycles..IEEE Trans. Automat. Control 50 (2005), 121-127. MR 2110819, 10.1109/tac.2004.841121
Reference: [17] Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules..IEEE Trans. Automat. Control 48 (2003), 988-1001. MR 1986266, 10.1109/tac.2003.812781
Reference: [18] Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot..In: Proc. IEEE Int. Conf. Rob. Autom. (1990), pp. 384-389.
Reference: [19] Levant, A.: Higher-order sliding modes, differentiation and output-feedback control..Int. J. Control 76 (2003), 924-941. Zbl 1049.93014, MR 1999375, 10.1080/0020717031000099029
Reference: [20] Li, S., Ding, S., Li, Q.: Global set stabilisation of the spacecraft attitude using finite-time control technique..Int. J. Control 82 (2009), 822-836. Zbl 1165.93328, MR 2523551, 10.1080/00207170802342818
Reference: [21] Murray, R.: Recent research in cooperative control of multivehicle systems..ASME J. Dyn. Syst. Meas. Control 129 (2007), 571-583. 10.1115/1.2766721
Reference: [22] Ni, W., Wang, X., Xiong, C.: Leader-following consensus of multiple linear systems under switching topologies: an averaging method..Kybernetika 48 (2012), 1194-1210. Zbl 1255.93069, MR 3052881
Reference: [23] Ou, M., Du, H., Li, S.: Finite-time tracking control of multiple nonholonomic mobile robots..J. Franklin Inst. 49 (2012), 2834-2860. Zbl 1264.93158, MR 2992101, 10.1016/j.jfranklin.2012.08.009
Reference: [24] Ou, M., Li, S., Wang, C.: Finite-time tracking control for a nonholonomic mobile robot based on visual servoing..Asian J. Control 16 (2014), 679-691. MR 3216258, 10.1002/asjc.773
Reference: [25] Ou, M., Sun, H., Li, S.: Finite time tracking control of a nonholonomic mobile robot with external disturbances..In: Proc. 31th Chinese Control Conference, Hefei 2012, pp. 853-858. Zbl 1265.68291, MR 3013579
Reference: [26] Ren, W., Beard, R.: Consensus seeking in multi-agent systems under dynamically changing interaction topologies..IEEE Trans. Automat. Control 50 (2005), 655-661. MR 2141568, 10.1109/tac.2005.846556
Reference: [27] Saber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays..IEEE Trans. Automat. Control 49 (2004), 1520-1533. MR 2086916, 10.1109/tac.2004.834113
Reference: [28] Shtessel, Y., Shkolnikov, I., Levant, A.: Smooth second-order sliding modes: missile guidance application..Automatica 43 (2007), 1470-1476. Zbl 1130.93392, MR 2320533, 10.1016/j.automatica.2007.01.008
Reference: [29] Vicsek, T., Czirok, A., Jacob, E., Cohen, I., Schochet, O.: Novel type of phase transitions in a system of self-driven particles..Phys. Rev. Lett. 75 (1995), 1226-1229. 10.1103/physrevlett.75.1226
Reference: [30] Wang, J., Qiu, Z., Zhang, G.: Finite-time consensus problem for multiple non-holonomic mobile agents..Kybernetika 48 (2012),1180-1193. Zbl 1255.93118, MR 3052880
Reference: [31] Wu, Y., Wang, B., Zong, G.: Finite time tracking controller design for nonholonomic systems with extended chained form..IEEE Trans. Circuits Sys. II: Express Briefs 52 (2005), 798-802. 10.1109/TCSII.2005.852528
Reference: [32] Yang, J., Li, S., Chen, X., Li, Q.: Disturbance rejection of ball mill grinding circuits using DOB and MPC..Powder Technol. 198 (2010), 219-228. 10.1016/j.powtec.2009.11.010
Reference: [33] Yu, S., Long, X.: Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode..Automatica 54 (2015), 158-165. Zbl 1318.93009, MR 3324518, 10.1016/j.automatica.2015.02.001
.

Files

Files Size Format View
Kybernetika_51-2015-6_9.pdf 438.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo