Previous |  Up |  Next

Article

Title: Synchronization of fractional-order chaotic systems with multiple delays by a new approach (English)
Author: Hu, Jianbing
Author: Wei, Hua
Author: Zhao, Lingdong
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 6
Year: 2015
Pages: 1068-1083
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose a new approach of designing a controller and an update rule of unknown parameters for synchronizing fractional-order system with multiple delays and prove the correctness of the approach according to the fractional Lyapunov stable theorem. Based on the proposed approach, synchronizing fractional delayed chaotic system with and without unknown parameters is realized. Numerical simulations are carried out to confirm the effectiveness of the approach. (English)
Keyword: fractional-order
Keyword: multiple delays
Keyword: Lyapunov stable theorem
Keyword: synchronization
Keyword: unknown parameters
MSC: 34C15
MSC: 34D06
MSC: 34H10
idZBL: Zbl 06537796
idMR: MR3453686
DOI: 10.14736/kyb-2015-6-1068
.
Date available: 2016-01-21T18:37:07Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144825
.
Reference: [1] Chen, L. P., Wei, S. B., Chai, Y.: Adaptive projective synchronization between two different fractional-order chaotic systems with fully unknown parameters..Math. Problems Engrg. 2012 (2012), 1-16. Zbl 1264.34103, 10.1155/2012/916140
Reference: [2] Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., Castro, R.: Linares using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems..Comm. Nonlinear Sci. Numer. Simul. 22 (2015), 650-659. MR 3282452, 10.1016/j.cnsns.2014.10.008
Reference: [3] Farivar, F., Shoorehdeli, M. A.: Fault tolerant synchronization of chaotic heavy symmetric gyroscope systems versus external disturbances via Lyapunov rule-based fuzzy control..ISA Trans. 51 (2012), 50-64. 10.1016/j.isatra.2011.07.002
Reference: [4] Goldfain, E.: Fractional dynamics and the Standard Model for particle physics..Comm. Nonlinear Sci. Numer. Simul. 13 (2008), 1397-1404. Zbl 1221.81175, MR 2369469, 10.1016/j.cnsns.2006.12.007
Reference: [5] Gong, Y. B., Lin, X., Wang, L.: Chemical synaptic coupling-induced delay-dependent synchronization transitions in scale-free neuronal networks..Science China - Chemistry 54 (2011), 1498-1503. 10.1007/s11426-011-4363-2
Reference: [6] Gutierrez, R. E., Rosario, J. M., Machado, J. T.: Fractional order calculus: Basic concepts and engineering applications..Math. Problems Engrg. 2010 (2010), 1-10. Zbl 1190.26002, 10.1155/2010/375858
Reference: [7] He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media..Computer Methods Appl. Mech. Engrg. 167 (1998), 57-68. Zbl 0942.76077, MR 1665221, 10.1016/s0045-7825(98)00108-x
Reference: [8] Li, X. D., Bohner, M.: Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback..Math. Computer Modelling 52 (2010), 643-653. Zbl 1202.34128, MR 2661751, 10.1016/j.mcm.2010.04.011
Reference: [9] Li, C. P., Deng, W. H., Xu, D.: Chaos synchronization of the chua system with a fractional order..Physica A - Statist. Mech. Appl. 360 (2006), 171-185. MR 2186261, 10.1016/j.physa.2005.06.078
Reference: [10] Li, M. D., Li, D. H., Wang, J.: Active disturbance rejection control for fractional-order system..ISA Trans. 52 (2013), 365-374. 10.1016/j.isatra.2013.01.001
Reference: [11] Lin, T. C., Kuo, C. H.: H-infinity synchronization of uncertain fractional order chaotic systems: Adaptive fuzzy approach..ISA Trans. 50 (2011), 548-556. 10.1016/j.isatra.2011.06.001
Reference: [12] Lu, J. H., Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria..IEEE Trans. Automat. Control 50 (2005), 841-846. MR 2142000, 10.1109/tac.2005.849233
Reference: [13] Lu, J. H., Chen, G. R.: Generating multiscroll chaotic attractors: Theories, methods and applications..Int. J. Bifurcation Chaos 16 (2006), 775-858. MR 2234259, 10.1142/s0218127406015179
Reference: [14] Merrikh-Bayat, F., Karimi-Ghartemani, M.: An efficient numerical algorithm for stability testing of fractional-delay systems..ISA Trans. 48 (2008), 32-37. 10.1016/j.isatra.2008.10.003
Reference: [15] Miao, Q. Y., Fang, J. A., Tang, Y.: Increasing-order projective synchronization of chaotic systems with time delay..Chinese Phys. Lett. 26 (2009), 5, 050501. 10.1088/0256-307x/26/5/050501
Reference: [16] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations..A Wiley-Interscience Publication, 1993. Zbl 0789.26002, MR 1219954
Reference: [17] Peng, M. S.: Bifurcation and chaotic behavior in the euler method for a ucar prototype delay model..Chaos Solitons and Fractals 22 (2004), 483-493. Zbl 1061.37022, MR 2024872, 10.1016/j.chaos.2004.02.038
Reference: [18] Podlubny, I.: Fractional Differential Equatons: An Introduction to Fractional Derivatives, Fractional Differential Equations to Methods of Their Solution and Some of Their Applications..Academic Press, San Diego 1999. MR 1658022
Reference: [19] Slotine, J. J. E., Li, W.: Applied nonlinear Control..Prentice Hall, 1999. Zbl 0753.93036
Reference: [20] Sollund, T., Leib, H.: Feedback communication with reduced delay over noisy time-dispersive channels..IEEE Transa. Commun. 60 (2012), 688-705. 10.1109/tcomm.2012.12.100001
Reference: [21] Tan, S. L., Lu, J. H., Yu, X. H.: Adaptive synchronization of an uncertain complex dynamical network..Chinese Sci. Bull. 58 (2013), 28-29. 10.1007/s11434-013-5984-y
Reference: [22] Tan, S. L., Lu, J. H., Hill, D. J.: Towards a theoretical framework for analysis and intervention of random drift on general networks..IEEE Trans. Automat. Control 60 (2015), 576-581. MR 3310190, 10.1109/tac.2014.2329235
Reference: [23] Tang, Y., Gao, H., Zou, W., Kurths, J.: Distributed synchronization in networks of agent systems with nonlinearities and random switchings..IEEE Trans. Cybernet. 43 (2013), 358-370. 10.1109/tsmcb.2012.2207718
Reference: [24] Tang, Y., Wong, W. K.: Distributed synchronization of coupled neural networks via randomly occurring control..IEEE Trans. Neural Networks Learning Systems 24 (2013), 435-447. 10.1109/tnnls.2012.2236355
Reference: [25] Wang, X. Y., Wang, M. J.: Hyperchaotic Lorenz system..Acta Physica Sinica 56 (2007), 5136-5141. Zbl 1267.93157, MR 2371460
Reference: [26] Wang, X. D., Tian, L. X.: Bifurcation analysis and linear control of the Newton-Leipnik system..Chaos Solitions Fractals 27 (2006), 31-38. Zbl 1091.93031, MR 2165262, 10.1016/j.chaos.2005.04.009
Reference: [27] Wang, S., Yu, Y. G.: Generalized projective synchronization of fractional order chaotic systems with different dimensions..Chinese Phys. Lett. 29 (2012), 2, 020505. 10.1088/0256-307x/29/2/020505
Reference: [28] Zhao, L. D., Hu, J. B., al., J. A. Fang et: Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure..ISA Trans. 52 (2013), 738-743. 10.1016/j.isatra.2013.07.001
Reference: [29] Zhang, Y. L., Luo, M. K.: Fractional rayleigh-duffing-like system and its synchronization..Nonlinear Dynamics 70 (2012), 1173-1183. Zbl 1268.34089, MR 2992124, 10.1007/s11071-012-0521-0
Reference: [30] Zhang, B. T., Pi, Y. G., Luo, Y.: Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor..ISA Trans. 51 (2012), 649-656. 10.1016/j.isatra.2012.04.006
Reference: [31] Zhou, J., Lu, j. A., Lu, J. H.: Adaptive synchronization of an uncertain complex dynamical network..IEEE Trans. Automat. Control 51 (2006), 652-656. MR 2228029, 10.1109/tac.2006.872760
Reference: [32] Zhu, W., Fang, J. A., Tang, Y.: Identification of fractional-order systems via a switching differential evolution subject to noise perturbations..Physics Lett. A 376 (2012), 3113-3120. 10.1016/j.physleta.2012.09.042
Reference: [33] Zhu, H., He, Z. S., Zhou, S. B.: Lag synchronization of the fractional-order system via nonlinear observer..Int. J. Modern Physics B 25 (2011), 3951-3964. Zbl 1247.34099, 10.1142/s0217979211102253
.

Files

Files Size Format View
Kybernetika_51-2015-6_10.pdf 510.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo