Previous |  Up |  Next

Article

Keywords:
property $(\rm SBaw)$; property $(\rm SBab)$; upper semi-B-Weyl spectrum; direct sum
Summary:
We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties $(\rm SBaw)$, $(\rm SBab)$, $(\rm SBw)$ and $(\rm SBb)$ are not preserved under direct sums of operators. \endgraf However, we prove that if $S$ and $T$ are bounded linear operators acting on Banach spaces and having the property $(\rm SBab)$, then $S\oplus T$ has the property $(\rm SBab)$ if and only if $\sigma _{\rm SBF_+^-}(S\oplus T)=\sigma _{\rm SBF_+^-}(S)\cup \sigma _{\rm SBF_+^-}(T)$, where $\sigma _{\rm SBF_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of $T$. \endgraf We obtain analogous preservation results for the properties $(\rm SBaw)$, $(\rm SBb)$ and $(\rm SBw)$ with extra assumptions.
References:
[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004). MR 2070395 | Zbl 1077.47001
[2] Aluthge, A.: On $p$-hyponormal operators for $0. Integral Equations Oper. Theory 13 (1990), 307-315. MR 1047771 | Zbl 0718.47015
[3] Berkani, M.: On a class of quasi-Fredholm operators. Integral Equations Oper. Theory 34 (1999), 244-249. DOI 10.1007/BF01236475 | MR 1694711 | Zbl 0939.47010
[4] Berkani, M., Arroud, A.: Generalized Weyl's theorem and hyponormal operators. J. Aust. Math. Soc. 76 (2004), 291-302. DOI 10.1017/S144678870000896X | MR 2041251 | Zbl 1061.47021
[5] Berkani, M., Castro, N., Djordjevi{ć}, S. V.: Single valued extension property and generalized Weyl's theorem. Math. Bohem. 131 (2006), 29-38. MR 2211001 | Zbl 1114.47015
[6] Berkani, M., Kachad, M., Zariouh, H.: Extended Weyl-type theorems for direct sums. Demonstr. Math. (electronic only) 47 (2014), 411-422. MR 3217737 | Zbl 1318.47019
[7] Berkani, M., Kachad, M., Zariouh, H., Zguitti, H.: Variations on a-Browder-type theorems. Sarajevo J. Math. 9 (2013), 271-281. DOI 10.5644/SJM.09.2.11 | MR 3146195
[8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. 69 (2003), 359-376. MR 1991673 | Zbl 1050.47014
[9] Berkani, M., Sarih, M.: On semi B-Fredholm operators. Glasg. Math. J. 43 (2001), 457-465. DOI 10.1017/S0017089501030075 | MR 1878588 | Zbl 0995.47008
[10] Berkani, M., Zariouh, H.: Weyl type-theorems for direct sums. Bull. Korean Math. Soc. 49 (2012), 1027-1040. DOI 10.4134/BKMS.2012.49.5.1027 | MR 3012970 | Zbl 1263.47016
[11] Conway, J. B.: The Theory of Subnormal Operators. Mathematical Surveys and Monographs 36 American Mathematical Society, Providence (1991). MR 1112128 | Zbl 0743.47012
[12] Djordjevi{ć}, S. V., Han, Y. M.: A note on Weyl's theorem for operator matrices. Proc. Am. Math. Soc. 131 (2003), 2543-2547. DOI 10.1090/S0002-9939-02-06808-9 | MR 1974653 | Zbl 1041.47006
[13] Duggal, B. P., Kubrusly, C. S.: Weyl's theorem for direct sums. Stud. Sci. Math. Hung. 44 (2007), 275-290. MR 2325524 | Zbl 1164.47019
[14] Heuser, H. G.: Functional Analysis. John Wiley Chichester (1982). MR 0640429 | Zbl 0465.47001
[15] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory. London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000). MR 1747914 | Zbl 0957.47004
[16] Lee, W. Y.: Weyl spectra of operator matrices. Proc. Am. Math. Soc. 129 (2001), 131-138. DOI 10.1090/S0002-9939-00-05846-9 | MR 1784020 | Zbl 0965.47011
Partner of
EuDML logo