[1] Aiena, P.:
Fredholm and Local Spectral Theory, with Applications to Multipliers. Kluwer Academic Publishers, Dordrecht (2004).
MR 2070395 |
Zbl 1077.47001
[2] Aluthge, A.:
On $p$-hyponormal operators for $0. Integral Equations Oper. Theory 13 (1990), 307-315. MR 1047771 | Zbl 0718.47015
[5] Berkani, M., Castro, N., Djordjevi{ć}, S. V.:
Single valued extension property and generalized Weyl's theorem. Math. Bohem. 131 (2006), 29-38.
MR 2211001 |
Zbl 1114.47015
[6] Berkani, M., Kachad, M., Zariouh, H.:
Extended Weyl-type theorems for direct sums. Demonstr. Math. (electronic only) 47 (2014), 411-422.
MR 3217737 |
Zbl 1318.47019
[7] Berkani, M., Kachad, M., Zariouh, H., Zguitti, H.:
Variations on a-Browder-type theorems. Sarajevo J. Math. 9 (2013), 271-281.
DOI 10.5644/SJM.09.2.11 |
MR 3146195
[8] Berkani, M., Koliha, J. J.:
Weyl type theorems for bounded linear operators. Acta Sci. Math. 69 (2003), 359-376.
MR 1991673 |
Zbl 1050.47014
[11] Conway, J. B.:
The Theory of Subnormal Operators. Mathematical Surveys and Monographs 36 American Mathematical Society, Providence (1991).
MR 1112128 |
Zbl 0743.47012
[13] Duggal, B. P., Kubrusly, C. S.:
Weyl's theorem for direct sums. Stud. Sci. Math. Hung. 44 (2007), 275-290.
MR 2325524 |
Zbl 1164.47019
[15] Laursen, K. B., Neumann, M. M.:
An Introduction to Local Spectral Theory. London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000).
MR 1747914 |
Zbl 0957.47004