Title:
|
A-Browder-type theorems for direct sums of operators (English) |
Author:
|
Berkani, Mohammed |
Author:
|
Sarih, Mustapha |
Author:
|
Zariouh, Hassan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
141 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
99-108 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the stability of a-Browder-type theorems for orthogonal direct sums of operators. We give counterexamples which show that in general the properties $(\rm SBaw)$, $(\rm SBab)$, $(\rm SBw)$ and $(\rm SBb)$ are not preserved under direct sums of operators. \endgraf However, we prove that if $S$ and $T$ are bounded linear operators acting on Banach spaces and having the property $(\rm SBab)$, then $S\oplus T$ has the property $(\rm SBab)$ if and only if $\sigma _{\rm SBF_+^-}(S\oplus T)=\sigma _{\rm SBF_+^-}(S)\cup \sigma _{\rm SBF_+^-}(T)$, where $\sigma _{\rm SBF_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of $T$. \endgraf We obtain analogous preservation results for the properties $(\rm SBaw)$, $(\rm SBb)$ and $(\rm SBw)$ with extra assumptions. (English) |
Keyword:
|
property $(\rm SBaw)$ |
Keyword:
|
property $(\rm SBab)$ |
Keyword:
|
upper semi-B-Weyl spectrum |
Keyword:
|
direct sum |
MSC:
|
47A10 |
MSC:
|
47A11 |
MSC:
|
47A53 |
MSC:
|
47A55 |
idZBL:
|
Zbl 06562162 |
idMR:
|
MR3475141 |
DOI:
|
10.21136/MB.2016.8 |
. |
Date available:
|
2016-03-17T19:50:01Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144855 |
. |
Reference:
|
[1] Aiena, P.: Fredholm and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers, Dordrecht (2004). Zbl 1077.47001, MR 2070395 |
Reference:
|
[2] Aluthge, A.: On $p$-hyponormal operators for $0<p<1$.Integral Equations Oper. Theory 13 (1990), 307-315. Zbl 0718.47015, MR 1047771 |
Reference:
|
[3] Berkani, M.: On a class of quasi-Fredholm operators.Integral Equations Oper. Theory 34 (1999), 244-249. Zbl 0939.47010, MR 1694711, 10.1007/BF01236475 |
Reference:
|
[4] Berkani, M., Arroud, A.: Generalized Weyl's theorem and hyponormal operators.J. Aust. Math. Soc. 76 (2004), 291-302. Zbl 1061.47021, MR 2041251, 10.1017/S144678870000896X |
Reference:
|
[5] Berkani, M., Castro, N., Djordjevi{ć}, S. V.: Single valued extension property and generalized Weyl's theorem.Math. Bohem. 131 (2006), 29-38. Zbl 1114.47015, MR 2211001 |
Reference:
|
[6] Berkani, M., Kachad, M., Zariouh, H.: Extended Weyl-type theorems for direct sums.Demonstr. Math. (electronic only) 47 (2014), 411-422. Zbl 1318.47019, MR 3217737 |
Reference:
|
[7] Berkani, M., Kachad, M., Zariouh, H., Zguitti, H.: Variations on a-Browder-type theorems.Sarajevo J. Math. 9 (2013), 271-281. MR 3146195, 10.5644/SJM.09.2.11 |
Reference:
|
[8] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators.Acta Sci. Math. 69 (2003), 359-376. Zbl 1050.47014, MR 1991673 |
Reference:
|
[9] Berkani, M., Sarih, M.: On semi B-Fredholm operators.Glasg. Math. J. 43 (2001), 457-465. Zbl 0995.47008, MR 1878588, 10.1017/S0017089501030075 |
Reference:
|
[10] Berkani, M., Zariouh, H.: Weyl type-theorems for direct sums.Bull. Korean Math. Soc. 49 (2012), 1027-1040. Zbl 1263.47016, MR 3012970, 10.4134/BKMS.2012.49.5.1027 |
Reference:
|
[11] Conway, J. B.: The Theory of Subnormal Operators.Mathematical Surveys and Monographs 36 American Mathematical Society, Providence (1991). Zbl 0743.47012, MR 1112128 |
Reference:
|
[12] Djordjevi{ć}, S. V., Han, Y. M.: A note on Weyl's theorem for operator matrices.Proc. Am. Math. Soc. 131 (2003), 2543-2547. Zbl 1041.47006, MR 1974653, 10.1090/S0002-9939-02-06808-9 |
Reference:
|
[13] Duggal, B. P., Kubrusly, C. S.: Weyl's theorem for direct sums.Stud. Sci. Math. Hung. 44 (2007), 275-290. Zbl 1164.47019, MR 2325524 |
Reference:
|
[14] Heuser, H. G.: Functional Analysis.John Wiley Chichester (1982). Zbl 0465.47001, MR 0640429 |
Reference:
|
[15] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.London Mathematical Society Monographs. New Series 20 Clarendon Press, Oxford (2000). Zbl 0957.47004, MR 1747914 |
Reference:
|
[16] Lee, W. Y.: Weyl spectra of operator matrices.Proc. Am. Math. Soc. 129 (2001), 131-138. Zbl 0965.47011, MR 1784020, 10.1090/S0002-9939-00-05846-9 |
. |