Previous |  Up |  Next

Article

Title: Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics (English)
Author: Cai, Xiushan
Author: Liao, Linling
Author: Zhang, Junfeng
Author: Zhang, Wei
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 1
Year: 2016
Pages: 76-88
Summary lang: English
.
Category: math
.
Summary: Observer design for ODE-PDE cascades is studied where the finite-dimension ODE is a globally Lipschitz nonlinear system, while the PDE part is a pair of counter-convecting transport dynamics. One major difficulty is that the state observation only rely on the PDE state at the terminal boundary, the connection point between the ODE and the PDE blocs is not accessible to measure. Combining the backstepping infinite-dimensional transformation with the high gain observer technology, the state of the ODE subsystem and the state of the pair of counter-convecting transport dynamics are estimated. It is shown that the observer error is asymptotically stable. A numerical example is given to illustrate the effectiveness of the proposed method. (English)
Keyword: nonlinear systems
Keyword: observer design
Keyword: backstepping
Keyword: counter-convecting transport dynamics
MSC: 93Cxx
MSC: 93Dxx
idZBL: Zbl 1374.93055
idMR: MR3482612
DOI: 10.14736/kyb-2016-1-0076
.
Date available: 2016-03-21T17:53:00Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144864
.
Reference: [1] Andrieu, V., Praly, L.: On the existence of Kazantzis-Kravaris/Luenberger observers..SIAM J. Control Optim. 45 (2006), 432-456. MR 2246084, 10.1137/040617066
Reference: [2] Cai, X., Krstic, M.: Control of discrete-time nonlinear systems actuated through counterconvecting transport dynamics..J. Control Decision 1 (2014), 34-50. 10.1080/23307706.2014.885290
Reference: [3] Cai, X., Krstic, M.: Nonlinear control under wave actuator dynamics with time- and state-dependent moving boundary..Int. J. Robust. Nonlinear Control 25 (2015), 222-253. Zbl 1305.93167, MR 3293094, 10.1002/rnc.3083
Reference: [4] Cai, X., Lin, Y., Liu, L.: Universal stabilisation design for a class of non-linear systems with time-varying input delays..IET Control Theory Appl. 9 (2015), 1481-1490. MR 3381705, 10.1049/iet-cta.2014.1085
Reference: [5] Coron, J., Vazquez, R., Krstic, M., Bastin, G.: Local exponential H2 stabilization of a 2x2 quasilinear hyperbolic system using backstepping..SIAM J. Control Optim. 51 (2013), 2005-2035. MR 3049647, 10.1137/120875739
Reference: [6] Curro, C., Fusco, D., Manganaro, N.: A reduction procedure for generalized Riemann problems with application to nonlinear transmission lines..J. Physics A: Math. Theory 44 (2011), 335205. Zbl 1223.35220, MR 2822118, 10.1088/1751-8113/44/33/335205
Reference: [7] Santos, V. Dos, Prieur, C.: Boundary control of open channels with numerical and experimental validations..IEEE Trans. Control System Technol. 16 (2008), 1252-1264. 10.1109/tcst.2008.919418
Reference: [8] Fridman, L., Shtessel, Y., Edwards, C., Yan, X. G.: Higer-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems..Int. J. Robust Nonlinear Control 18 (2008), 399-412. MR 2392130, 10.1002/rnc.1198
Reference: [9] Goatin, P.: The Aw-Rascle vehicular traffic flow model with phase transitions..Math. Computer Modeling 44 (2006), 287-303. Zbl 1134.35379, MR 2239057, 10.1016/j.mcm.2006.01.016
Reference: [10] Gugat, M., Dick, M.: Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction..Math. Control Related Fields 1 (2011), 469-491. MR 2871937, 10.3934/mcrf.2011.1.469
Reference: [11] Krstic, M.: Compensating a string PDE in the actuation or sensing path of an unstable ODE..Systems Control Lett. 54 (2009), 1362-1368. MR 2532631, 10.1109/tac.2009.2015557
Reference: [12] Krstic, M.: Compensating actuator and sensor dynamics governed by diffusion PDEs..Systems Control Lett. 58 (2009), 372-377. Zbl 1159.93024, MR 2512493, 10.1016/j.sysconle.2009.01.006
Reference: [13] Krstic, M., Bekiaris-Liberis, N.: Nonlinear stabilization in infinite dimension..Ann. Rev. Control 37 (2013), 220-231. 10.1016/j.arcontrol.2013.09.002
Reference: [14] Krstic, M., Smyshlyaev, A.: Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays..Systems Control Lett. 57 (2008), 750-758. Zbl 1153.93022, MR 2446460, 10.1016/j.arcontrol.2013.09.002
Reference: [15] Meglio, F. Di, Krstic, M., Vazquez, R., Petit, N.: Backstepping stabilization of an underactuated $3 \times 3$ linear hyperbolic system of fluid flow transport equations..In: Proc. American Control Conference, Montreal 2012, pp. 3365-3370. 10.1109/acc.2012.6315422
Reference: [16] Meglio, F. Di, Vazquez, R., Krstic, M.: Stabilization of a system of n + 1 coupled first-order hyperbolic linear PDEs with a single boundary input..IEEE Trans. Automat. Control 58 (2013), 3097-3111. MR 3152271, 10.1109/tac.2013.2274723
Reference: [17] Shim, H., Son, Y. I., Seo, J. H.: Semi-global observer for multi-output nonlinear system..System Control Lett. 42 (2001), 233-244. MR 2007052, 10.1016/s0167-6911(00)00098-0
Reference: [18] Vazquez, R., Krstic, M.: Control of 1-D parabolic PDEs with Volterra nonlinearities. Part I: Design..Automatica 44 (2008), 2778-2790. MR 2527199, 10.1016/j.automatica.2008.04.013
Reference: [19] Vazquez, R., Krstic, M.: Control of 1-D parabolic PDEs with Volterra nonlinearities, Part II: Analysis..Automatica 44 (2008), 2791-2803. MR 2527200, 10.1016/j.automatica.2008.04.007
Reference: [20] Wu, H., Wang, J.: Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion PDE-governed sensor dynamics..Nonlinear Dyn. 72 (2013), 615-628. Zbl 1268.93124, MR 3046917, 10.1007/s11071-012-0740-4
.

Files

Files Size Format View
Kybernetika_52-2016-1_6.pdf 504.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo