Previous |  Up |  Next

Article

Title: Stabilization of homogeneous polynomial systems in the plane (English)
Author: Jerbi, Hamadi
Author: Kharrat, Thouraya
Author: Sioud, Khaled
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 1
Year: 2016
Pages: 131-152
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the problem of stabilization via homogeneous feedback of single-input homogeneous polynomial systems in the plane. We give a complete classification of systems for which there exists a homogeneous stabilizing feedback that is smooth on $\mathbb{R}^2 \setminus\{ (0,0)\}$ and preserve the homogeneity of the closed loop system. Our results are essentially based on Theorem of Hahn in which the author gives necessary and sufficient conditions of stability of homogeneous systems in the plane. (English)
Keyword: polynomial system
Keyword: control system
Keyword: homogeneous feedback
Keyword: stabilization
MSC: 93D15
idZBL: Zbl 1374.93301
idMR: MR3482615
DOI: 10.14736/kyb-2016-1-0131
.
Date available: 2016-03-21T17:56:56Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144867
.
Reference: [1] Artstein, Z.: Stabilization with relaxed controls..Nonlinear Analysis, TMA, 7 (1983), 1163-1173. Zbl 0525.93053, MR 0721403, 10.1016/0362-546x(83)90049-4
Reference: [2] Coron, J. M., Praly, L.: Adding an integrator for the stabilization problem..Systems Control Lett. 17 (1991), 89-104. Zbl 0747.93072, MR 1120754, 10.1016/0167-6911(91)90034-c
Reference: [3] Hahn, W.: Stability of Motion..Springer-Verlag 1967. Zbl 0189.38503, MR 0223668, 10.1007/978-3-642-50085-5
Reference: [4] Hermes, H.: Homogeneous feedback controls for homogeneous systems..Systems Control Lett. 24 (1995), 7-11. Zbl 0877.93088, MR 1307121, 10.1016/0167-6911(94)00035-t
Reference: [5] Jerbi, H., Maaloum, A. Ould: Feedback stabilization of homogeneous polynomial systems of odd degree in the plane..Systems Control Lett. 56 (2007), 611-617. MR 2344649, 10.1016/j.sysconle.2007.04.002
Reference: [6] Jerbi, H., Kharrat, T.: Asymptotic stabilizability of homogeneous polynomial systems of odd degree..Systems Control Lett. 48 (2003), 87-99. Zbl 1097.93033, MR 2011869, 10.1016/s0167-6911(02)00248-7
Reference: [7] Kawski, M.: Homogeneous stabilizing feedback laws..Control-Theory Advanced Technol. 6 (1990), 497-516. MR 1092775
Reference: [8] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field..Systems Control Lett. 19 (1992), 467-473. Zbl 0762.34032, MR 1195304, 10.1016/0167-6911(92)90078-7
Reference: [9] Massera, J. L.: Contibutions to stability theory..Ann. Math. 64 (1956), 182-206. MR 0079179, 10.2307/1969955
Reference: [10] Sontag, E. D.: A "universal" construction of Artstein's theorem on nonlinear stabilization..Systems Control Lett. 13 (1989), 117-123. Zbl 0684.93063, MR 1014237, 10.1016/0167-6911(89)90028-5
Reference: [11] Tsinias, J.: Stabilization of affine in control nonlinear systems..Nonlinear Analysis, TMA 12 (1988), 1283-1296. Zbl 0662.93055, MR 0969506, 10.1016/0362-546x(88)90060-0
Reference: [12] Tsinias, J.: Sufficient Lyapunov like conditions for stabilization..Math. Control, Signals Systems 2 (1989), 343-357. Zbl 0688.93048, MR 1015672, 10.1007/bf02551276
.

Files

Files Size Format View
Kybernetika_52-2016-1_9.pdf 395.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo