Previous |  Up |  Next

Article

Title: A continuum $X$ such that $C(X)$ is not continuously homogeneous (English)
Author: Illanes, Alejandro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 1
Year: 2016
Pages: 97-101
Summary lang: English
.
Category: math
.
Summary: A metric continuum $X$ is said to be continuously homogeneous provided that for every two points $p,q\in X$ there exists a continuous surjective function $f:X\rightarrow X$ such that $f(p)=q$. Answering a question by W.J. Charatonik and Z. Garncarek, in this paper we show a continuum $X$ such that the hyperspace of subcontinua of $X$, $C(X)$, is not continuously homogeneous. (English)
Keyword: continuum
Keyword: continuously homogeneous
Keyword: hyperspace
MSC: 54B20
MSC: 54F15
idZBL: Zbl 06562200
idMR: MR3478343
DOI: 10.14712/1213-7243.2015.146
.
Date available: 2016-04-12T05:07:26Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144919
.
Reference: [1] Charatonik J.J., Charatonik W.J.: A degree of nonlocal connectedness.Rocky Mountain J. Math. 31 (2001), 1205–1236. MR 1895293, 10.1216/rmjm/1021249438
Reference: [2] Charatonik W.J., Garncarek Z.: Some remarks on continuously homogeneous continua.Bull. Polish. Acad. Sci. Math. 32 (1984), 339–342. MR 0785993
Reference: [3] Engelking R., Lelek A.: Cartesian products and continuous images.Colloq. Math. 8 (1961), 27–29. MR 0131263
Reference: [4] Goodykoontz J.T., Jr.: More on connectedness im kleinen and local connectedness in $C(X)$.Proc. Amer. Math. Soc. 65 (1977), 357–364. MR 0451188
Reference: [5] Illanes A., Nadler S.B., Jr.: Hyperspaces: Fundamentals and Recent Advances.Monographs and Textbooks in Pure and Applied Mathematics, 216, Marcel Dekker, Inc., New York and Basel, 1999. MR 1670250
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-1_10.pdf 195.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo