Previous |  Up |  Next

Article

Title: Diagonals of separately continuous functions of $n$ variables with values in strongly $\sigma$-metrizable spaces (English)
Author: Karlova, Olena
Author: Mykhaylyuk, Volodymyr
Author: Sobchuk, Oleksandr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 1
Year: 2016
Pages: 103-122
Summary lang: English
.
Category: math
.
Summary: We prove the result on Baire classification of mappings $f:X\times Y\to Z$ which are continuous with respect to the first variable and belongs to a Baire class with respect to the second one, where $X$ is a $PP$-space, $Y$ is a topological space and $Z$ is a strongly $\sigma$-metrizable space with additional properties. We show that for any topological space $X$, special equiconnected space $Z$ and a mapping $g:X\to Z$ of the $(n-1)$-th Baire class there exists a strongly separately continuous mapping $f:X^n\to Z$ with the diagonal $g$. For wide classes of spaces $X$ and $Z$ we prove that diagonals of separately continuous mappings $f:X^n\to Z$ are exactly the functions of the $(n-1)$-th Baire class. An example of equiconnected space $Z$ and a Baire-one mapping $g:[0,1]\to Z$, which is not a diagonal of any separately continuous mapping $f:[0,1]^2\to Z$, is constructed. (English)
Keyword: diagonal of a mapping
Keyword: separately continuous mapping
Keyword: Baire-one mapping
Keyword: equiconnected space
Keyword: strongly $\sigma$-metrizable space
MSC: 26B05
MSC: 54C05
MSC: 54C08
idZBL: Zbl 06562201
idMR: MR3478344
DOI: 10.14712/1213-7243.2015.152
.
Date available: 2016-04-12T05:09:10Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144920
.
Reference: [1] Baire R.: Sur les fonctions de variables reélles.Ann. Mat. Pura Appl., ser. 3 (1899), no. 3, 1–123.
Reference: [2] Banakh T.: (Metrically) Quater-stratifable spaces and their applications in the theory of separately continuous functions.Topology Appl. 157 (2010), no. 1, 10–28. MR 1968755
Reference: [3] Burke M.: Borel measurability of separately continuous functions.Topology Appl. 129 (2003), no. 1, 29–65. MR 1955664, 10.1016/S0166-8641(02)00136-0
Reference: [4] Engelking R.: General Topology.revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [5] Fosgerau M.: When are Borel functions Baire functions?.Fund. Math. 143 (1993), 137–152. MR 1240630
Reference: [6] Hahn H.: Theorie der reellen Funktionen. 1. Band.Springer, Berlin, 1921.
Reference: [7] Hansell R.W.: Borel measurable mappings for nonseparable metric spaces.Trans. Amer. Math. Soc. 161 (1971), 145–169. MR 0288228, 10.1090/S0002-9947-1971-0288228-1
Reference: [8] Hansell R.W.: On Borel mappings and Baire functions.Trans. Amer. Math. Soc. 194 (1974), 145–169. MR 0362270, 10.1090/S0002-9947-1974-0362270-7
Reference: [9] Karlova O., Maslyuchenko V., Mykhaylyuk V.: Equiconnected spaces and Baire classification of separately continuous functions and their analogs.Cent. Eur. J. Math., 10 (2012), no. 3, 1042–1053. MR 2902232, 10.2478/s11533-012-0016-8
Reference: [10] Karlova O., Mykhaylyuk V., Sobchuk O.: Diagonals of separately continuous functions and their analogs.Topology Appl. 160 (2013), 1–8. MR 2995069, 10.1016/j.topol.2012.09.003
Reference: [11] Karlova O.: Classification of separately continuous functions with values in sigma-metrizable spaces.Applied Gen. Top. 13 (2012), no. 2, 167–178. MR 2998364
Reference: [12] Karlova O.: Functionally $\sigma$-discrete mappings and a generalization of Banach's theorem.Topology Appl. 189 (2015), 92–106. MR 3342574, 10.1016/j.topol.2015.04.014
Reference: [13] Karlova O.: On Baire classification of mappings with values in connected spaces.Eur. J. Math., DOI: 10.1007/s40879-015-0076-y. 10.1007/s40879-015-0076-y
Reference: [14] Lebesgue H.: Sur l'approximation des fonctions.Bull. Sci. Math. 22 (1898), 278–287.
Reference: [15] Lebesgue H.: Sur les fonctions respresentables analytiquement.Journ. de Math. 2 (1905), no. 1, 139–216.
Reference: [16] Maslyuchenko O., Maslyuchenko V., Mykhaylyuk V., Sobchuk O.: Paracompactness and separately continuous mappings.General Topology in Banach Spaces, Nova Sci. Publ., Huntington, New York, 2001, pp. 147–169. MR 1901542
Reference: [17] Moran W.: Separate continuity and support of measures.J. London. Math. Soc. 44 (1969), 320–324. MR 0236346, 10.1112/jlms/s1-44.1.320
Reference: [18] Mykhaylyuk V.: Construction of separately continuous functions of $n$ variables with the given restriction.Ukr. Math. Bull. 3 (2006), no. 3, 374–381 (in Ukrainian). MR 2330679
Reference: [19] Mykhaylyuk V.: Baire classification of separately continuous functions and Namioka property.Ukr. Math. Bull. 5 (2008), no. 2, 203–218 (in Ukrainian). MR 2559835
Reference: [20] Mykhaylyuk V., Sobchuk O., Fotij O.: Diagonals of separately continuous multivalued mappings.Mat. Stud. 39 (2013), no. 1, 93–98 (in Ukrainian). MR 3099603
Reference: [21] Rudin W.: Lebesgue's first theorem.Math. Analysis and Applications, Part B. Adv. in Math. Supplem. Studies, 7B (1981), 741–747. MR 0634266
Reference: [22] Sobchuk O.: Baire classification and Lebesgue spaces.Sci. Bull. Chernivtsi Univ. 111 (2001), 110–112 (in Ukrainian).
Reference: [23] Sobchuk O.: $PP$-spaces and Baire classification.Int. Conf. on Funct. Analysis and its Appl. Dedic. to the 110-th ann. of Stefan Banach (May 28-31, Lviv) (2002), p. 189.
Reference: [24] Schaefer H.: Topological Vector Spaces.Macmillan, 1966. Zbl 0983.46002, MR 0193469
Reference: [25] Vera G.: Baire measurability of separately continuous functions.Quart. J. Math. Oxford. 39 (1988), no. 153, 109–116. MR 0929799, 10.1093/qmath/39.1.109
Reference: [26] Veselý L.: Characterization of Baire-one functions between topological spaces.Acta Univ. Carol., Math. Phys. 33 (1992), no. 2, 143–156. MR 1287236
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-1_11.pdf 331.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo