Title:
|
Saddle point criteria for second order $\eta $-approximated vector optimization problems (English) |
Author:
|
Jayswal, Anurag |
Author:
|
Jha, Shalini |
Author:
|
Choudhury, Sarita |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
359-378 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The purpose of this paper is to apply second order $\eta$-approximation method introduced to optimization theory by Antczak [2] to obtain a new second order $\eta$-saddle point criteria for vector optimization problems involving second order invex functions. Therefore, a second order $\eta$-saddle point and the second order $\eta$-Lagrange function are defined for the second order $\eta$-approximated vector optimization problem constructed in this approach. Then, the equivalence between an (weak) efficient solution of the considered vector optimization problem and a second order $\eta$-saddle point of the second order $\eta$-Lagrangian in the associated second order $\eta$-approximated vector optimization problem is established under the assumption of second order invexity. (English) |
Keyword:
|
efficient solution |
Keyword:
|
second order $\eta $-approximation |
Keyword:
|
saddle point criteria |
Keyword:
|
optimality condition |
MSC:
|
90C26 |
MSC:
|
90C29 |
MSC:
|
90C30 |
MSC:
|
90C46 |
idZBL:
|
Zbl 06644300 |
idMR:
|
MR3532512 |
DOI:
|
10.14736/kyb-2016-3-0359 |
. |
Date available:
|
2016-07-17T12:13:27Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145781 |
. |
Reference:
|
[1] Aghezzaf, B., Hachimi, M.: Second-order optimality conditions in multiobjective optimization problems..J. Optim. Theory Appl. 102 (1999), 37-50. Zbl 1039.90062, MR 1702841, 10.1023/a:1021834210437 |
Reference:
|
[2] Antczak, T.: An $\eta$-approximation method in nonlinear vector optimization..Nonlinear Anal. 63 (2005), 225-236. Zbl 1093.90053, MR 2165497, 10.1023/a:1021834210437 |
Reference:
|
[3] Antczak, T.: Saddle point criteria and duality in multiobjective programming via an $\eta$-approximation method..Anziam J. 47 (2005), 155-172. Zbl 1123.90343, MR 2187011, 10.1017/s1446181100009962 |
Reference:
|
[4] Antczak, T.: Saddle point criteria via a second order $\eta$-approximation approach for nonlinear mathematical programming problem involving second order invex functions..Kybernetika 47 (2011), 222-240. MR 2828574 |
Reference:
|
[5] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms..John Wiley and Sons, New York 1991. Zbl 1140.90040, MR 2218478 |
Reference:
|
[6] Bector, C. R., Bector, B. K.: Generalized-bonvex functions and second order duality for a nonlinear programming problem..Congr. Numer. 52 (1985), 37-52. 10.1080/09720502.2003.10700330 |
Reference:
|
[7] Egudo, R. R., Hanson, M. A.: Multiobjective duality with invexity..J. Math. Anal. Appl. 126 (1987), 469-477. Zbl 0635.90086, MR 0900761, 10.1016/0022-247x(87)90054-0 |
Reference:
|
[8] Ghosh, M. K., Shaiju, A. J.: Existence of value and saddle point in infinite-dimensional differential games..J. Optim. Theory Appl. 121 (2004), 301-325. Zbl 1099.91023, MR 2085280, 10.1023/b:jota.0000037407.15482.72 |
Reference:
|
[9] Hanson, M. A.: On the sufficiency of the Kuhn-Tucker conditions..J. Math. Anal. Appl. 80 (1981), 545-550. MR 0614849, 10.1016/0022-247x(81)90123-2 |
Reference:
|
[10] Horst, R., Pardalos, P. M., Thoai, N. V.: Introduction to Global Optimization. Second edition..Kluwer Academic Publishers, 2000. MR 1799654 |
Reference:
|
[11] Li, Z. F., Wang, S. Y.: Lagrange multipliers and saddle points in multiobjective programming..J. Optim. Theory Appl. 83 (1994), 63- 81. Zbl 0823.90107, MR 1298857, 10.1007/bf02191762 |
Reference:
|
[12] Li, T., Wang, Y. J., Liang, Z., Pardalos, P. M.: Local saddle point and a class of convexification methods for nonconvex optimization problems..J. Glob. Optim. 38 (2007), 405-419. Zbl 1175.90317, MR 2328021, 10.1007/s10898-006-9090-4 |
Reference:
|
[13] Luc, D. T.: Theory of Vector Optimization..Springer-Verlag, Lecture Notes in Economics and Mathematical systems 319, Berlin, New York 1989. Zbl 0654.90082, MR 1116766, 10.1007/978-3-642-50280-4 |
. |