Previous |  Up |  Next

Article

Title: OWA operators for discrete gradual intervals: implications to fuzzy intervals and multi-expert decision making (English)
Author: Takáč, Zdenko
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 3
Year: 2016
Pages: 379-402
Summary lang: English
.
Category: math
.
Summary: A new concept in fuzzy sets theory, namely that of gradual element, was introduced recently. It is known that the set of gradual real numbers is not ordered linearly. We restrict our attention to a discrete case and propose a class of linear orders for discrete gradual real numbers. Then, using idea of the so-called admissible order of intervals, we present a class of linear orders for discrete gradual intervals. Once we have the linear orders it is possible to define OWA operator for discrete gradual real numbers and OWA operator for discrete gradual intervals. Recall that gradual intervals also encompass fuzzy intervals, hence our results are applicable to the setting of fuzzy intervals. Our approach is illustrated on a multi-expert decision making problem. (English)
Keyword: OWA operator
Keyword: ordered weighted averaging operator
Keyword: gradual number
Keyword: gradual interval
Keyword: fuzzy interval
Keyword: linear order
Keyword: total order
Keyword: multi-expert decision making
Keyword: type-2 fuzzy set
MSC: 03E72
MSC: 68T37
idZBL: Zbl 06644301
idMR: MR3532513
DOI: 10.14736/kyb-2016-3-0379
.
Date available: 2016-07-17T12:14:57Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145782
.
Reference: [1] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A guide for practitioners..Studies in Fuzziness and Soft Computing 221 (2007), 261-269. 10.1007/978-3-540-73721-6_5
Reference: [2] Bustince, H., Barrenechea, E., Calvo, T., James, S., Beliakov, G.: Consensus in multi-expert decision making problems using penalty functions defined over a Cartesian product of lattices..Inform. Fusion 17 (2014), 56-64. 10.1016/j.inffus.2011.10.002
Reference: [3] Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders for intervals by means of aggregation functions..Fuzzy Sets and Systems 220 (2013), 69-77. Zbl 1284.03242, MR 3042258, 10.1016/j.fss.2012.07.015
Reference: [4] Bustince, H., Galar, M., Bedregal, B., Kolesárová, A., Mesiar, R.: A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications..IEEE Trans. Fuzzy Systems 21 (2013), 1150-1162. 10.1109/tfuzz.2013.2265090
Reference: [5] Castillo, O., Melin, P.: A review on interval type-2 fuzzy logic applications in intelligent control..Inform. Sciences 279 (2014), 615-631. MR 3212110, 10.1016/j.ins.2014.04.015
Reference: [6] Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations..Fuzzy Sets and Systems 97 (1998), 33-48. Zbl 0932.91012, MR 1618276, 10.1016/s0165-0114(96)00339-9
Reference: [7] Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy interval analysis..In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), The Handbooks of Fuzzy Sets Series, Vol. 7, Springer US 2000, pp. 483-581. Zbl 0988.26020, MR 1890240, 10.1007/978-1-4615-4429-6_11
Reference: [8] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives..Inform. Sciences 36 (1985), 85-121. Zbl 0582.03040, MR 0813766, 10.1016/0020-0255(85)90027-1
Reference: [9] Dubois, D., Prade, H.: Gradual elements in a fuzzy set..Soft Computing 12 (2008), 165-175. Zbl 1133.03026, 10.1007/s00500-007-0187-6
Reference: [10] Fortin, J., Dubois, D., Fargier, H.: Gradual numbers and their application to fuzzy interval analysis..IEEE Trans. Fuzzy Systems 16 (2008), 388-402. 10.1109/tfuzz.2006.890680
Reference: [11] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, Cambridge 2009. Zbl 1206.68299, MR 2538324, 10.1017/cbo9781139644150
Reference: [12] Herrera, F., Martínez, L.: A model based on linguistic 2-tuples for dealing with multigranular hierarchical linguistic contexts in multi-expert decision-making..IEEE Trans. Systems Man and Cybernetics, Part B: Cybernetics 31 (2001), 227-234. 10.1109/3477.915345
Reference: [13] Karnik, N. N., Mendel, J. M.: Operations on type-2 fuzzy sets..Fuzzy Sets and Systems 122 (2001), 327-348. Zbl 1010.03047, MR 1854822, 10.1016/s0165-0114(00)00079-8
Reference: [14] Kosiński, W., Prokopowicz, P., Rosa, A.: Defuzzification functionals of ordered fuzzy numbers..IEEE Trans. Fuzzy Systems 21 (2013), 1163-1169. 10.1109/tfuzz.2013.2243456
Reference: [15] Lizasoain, I., Moreno, C.: OWA operators defined on complete lattices..Fuzzy Sets and Systems 224 (2013), 36-52. Zbl 1284.03246, MR 3068107, 10.1016/j.fss.2012.10.012
Reference: [16] Lodwick, W. A., Untiedt, E. A.: A comparison of interval analysis using constraint interval arithmetic and fuzzy interval analysis using gradual numbers..In: Annual Meeting of the North American Fuzzy Information Processing Society, NAFIPS 2008, pp. 1-6. 10.1109/nafips.2008.4531302
Reference: [17] Martin, T. P., Azvine, B.: The X-mu approach: Fuzzy quantities, fuzzy arithmetic and fuzzy association rules..In: IEEE Symposium on Foundations of Computational Intelligence (FOCI), 2013, pp. 24-29. 10.1109/foci.2013.6602451
Reference: [18] Melin, P., Castillo, O.: A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition..Applied Soft Computing J. 21 (2014), 568-577. 10.1016/j.asoc.2014.04.017
Reference: [19] Mesiar, R., Kolesárová, A., Calvo, T., Komorníková, M.: A review of aggregation functions..In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models (H. Bustince et al., eds.), Springer, Berlin 2008, pp. 121-144. Zbl 1147.68081, 10.1007/978-3-540-73723-0_7
Reference: [20] Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type 2..Information and Control 31 (1976), 312-340. Zbl 0331.02042, MR 0449947, 10.1016/s0019-9958(76)80011-3
Reference: [21] Moore, E. R.: Methods and Applications of Interval Analysis..SIAM 1979. Zbl 0417.65022, MR 0551212, 10.1137/1.9781611970906
Reference: [22] Moore, E. R., Lodwick, W. A.: Interval analysis and fuzzy set theory..Fuzzy Sets and Systems 135 (2003), 5-9. Zbl 1015.03513, MR 1977533, 10.1016/s0165-0114(02)00246-4
Reference: [23] Ochoa, G., Lizasoain, I., Paternain, D., Bustince, H., Pal, N. R.: Some properties of lattice OWA operators and their importance in image processing..In: Proc. IFSA-EUSFLAT 2015, pp. 1261-1265. 10.2991/ifsa-eusflat-15.2015.178
Reference: [24] Roubens, M.: Fuzzy sets and decision analysis..Fuzzy Sets and Systems 90 (1997), 199-206. Zbl 0921.90007, MR 1486262, 10.1016/s0165-0114(97)00087-0
Reference: [25] Sánchez, D., Delgado, M., Vila, M. A., Chamorro-Martínez, J.: On a non-nested level-based representation of fuzziness..Fuzzy Sets and Systems 192 (2012), 159-175. Zbl 1238.68164, MR 2878560, 10.1016/j.fss.2011.07.002
Reference: [26] Takáč, Z.: Aggregation of fuzzy truth values..Inform. Sciences 271 (2014), 1-13. MR 3191831, 10.1016/j.ins.2014.02.116
Reference: [27] Takáč, Z.: A linear order and OWA operator for discrete gradual real numbers..In: Proc. IFSA-EUSFLAT 2015, pp. 260-266. 10.2991/ifsa-eusflat-15.2015.39
Reference: [28] Walker, C. L., Walker, E. A.: The algebra of fuzzy truth values..Fuzzy Sets and Systems 149 (2005), 309-347. Zbl 1152.03331, MR 2116888, 10.1016/j.fss.2003.12.003
Reference: [29] Xu, Z. S., Da, Q. L.: The uncertain OWA operator..Int. J. Intelligent Systems 17 (2002), 569-575. Zbl 1016.68025, 10.1002/int.10038
Reference: [30] Yager, R. R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking..IEEE Transactions on Systems Man and Cybernetics 18 (1988), 183-190. Zbl 0637.90057, MR 0931863, 10.1109/21.87068
Reference: [31] Zhou, S. M., Chiclana, F., John, R. I., Garibaldi, J. M.: Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers..Fuzzy Sets and Systems 159 (2008), 3281-3296. Zbl 1187.68619, MR 2467606, 10.1016/j.fss.2008.06.018
Reference: [32] Zhou, S. M., Chiclana, F., John, R. I., Garibaldi, J. M.: Alpha-level aggregation: A practical approach to type-1 OWA operation for aggregating uncertain information with applications to breast cancer treatments..IEEE Tran. Knowledge Data Engrg. 23 (2011), 1455-1468. 10.1109/tkde.2010.191
.

Files

Files Size Format View
Kybernetika_52-2016-3_4.pdf 531.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo