Previous |  Up |  Next

Article

Title: Quermass-interaction process with convex compact grains (English)
Author: Helisová, Kateřina
Author: Staněk, Jakub
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 4
Year: 2016
Pages: 463-487
Summary lang: English
.
Category: math
.
Summary: The paper concerns an extension of random disc Quermass-interaction process, i.e. the model of discs with mutual interactions, to the process of interacting objects of more general shapes. Based on the results for the random disc process and the process with polygonal grains, theoretical results for the generalized process are derived. Further, a simulation method, its advantages and the corresponding complications are described, and some examples are introduced. Finally, a short comparison to the random disc process is given. (English)
Keyword: attractiveness
Keyword: germ-grain model
Keyword: Markov Chain Monte Carlo simulation
Keyword: Quermass-interaction process
Keyword: random set
Keyword: repulsiveness
Keyword: Ruelle stability
MSC: 60D05
MSC: 60G55
idZBL: Zbl 06644007
idMR: MR3532254
DOI: 10.1007/s10492-016-0142-x
.
Date available: 2016-08-01T09:28:44Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145796
.
Reference: [1] Altendorf, H., Latourte, F., Jeulin, D., Faessel, M., Saintyant, L.: 3D reconstruction of a multiscale microstructure by anisotropic tessellation models.Image Anal. Stereol. 33 (2014), 121-130. 10.5566/ias.v33.p121-130
Reference: [2] Chiu, S. N., Stoyan, D., Kendall, W. S., Mecke, J.: Stochastic Geometry and Its Applications.Wiley Series in Probability and Statistics John Wiley & Sons, Chichester (2013). Zbl 1291.60005, MR 3236788
Reference: [3] Dereudre, D.: Existence of Quermass processes for non locally stable interaction and non bounded convex grains.Adv. Appl. Probab. 41 (2009), 664-681. MR 2571312, 10.1017/S0001867800003517
Reference: [4] Dereudre, D., Lavancier, F., Helisová, K. Staňková: Estimation of the intensity parameter of the germ-grain Quermass-interaction model when the number of germs is not observed.Scand. J. Stat. 41 (2014), 809-829. MR 3249430, 10.1111/sjos.12064
Reference: [5] Diggle, P. J.: Binary mosaics and the spatial pattern of heather.Biometrics 37 (1981), 531-539. 10.2307/2530566
Reference: [6] Geyer, C. J., Møller, J.: Simulation procedures and likelihood inference for spatial point processes.Scand. J. Stat. 21 (1994), 359-373. Zbl 0809.62089, MR 1310082
Reference: [7] Helisová, K.: Modeling, statistical analyses and simulations of random items and behavior on material surfaces.Supplemental UE: TMS 2014 Conference Proceedings, San Diego (2014), 461-468.
Reference: [8] Hermann, P., Mrkvička, T., Mattfeldt, T., Minárová, M., Helisová, K., Nicolis, O., Wartner, F., Stehlík, M.: Fractal and stochastic geometry inference for breast cancer: a case study with random fractal models and Quermass-interaction process.Stat. Med. 34 (2015), 2636-2661. MR 3368407, 10.1002/sim.6497
Reference: [9] Kendall, W. S., Lieshout, M. N. M. van, Baddeley, A. J.: Quermass-interaction processes: conditions for stability.Adv. Appl. Probab. 31 (1999), 315-342. MR 1724554, 10.1017/S0001867800009137
Reference: [10] Klazar, M.: Generalised Davenport-Schinzel sequences: results, problems and applications.Integers: The Electronic Journal of Combinatorial Number Theory 2 (2002), A11. MR 1917956
Reference: [11] Molchanov, I.: Theory of Random Sets.Probability and Its Applications Springer, London (2005). Zbl 1109.60001, MR 2132405
Reference: [12] Møller, J., Helisová, K.: Power diagrams and interaction processes for unions of discs.Adv. Appl. Probab. 40 (2008), 321-347. Zbl 1146.60322, MR 2431299, 10.1017/S0001867800002548
Reference: [13] Møller, J., Helisová, K.: Likelihood inference for unions of interacting discs.Scand. J. Stat. 37 (2010), 365-381. Zbl 1226.60016, MR 2724503, 10.1111/j.1467-9469.2009.00660.x
Reference: [14] Møller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes.Monographs on Statistics and Applied Probability 100 Chapman and Hall/CRC, Boca Raton (2004). Zbl 1044.62101, MR 2004226
Reference: [15] Mrkvička, T., Mattfeldt, T.: Testing histological images of mammary tissues on compatibility with the Boolean model of random sets.Image Anal. Stereol. 30 (2011), 11-18. MR 2816303, 10.5566/ias.v30.p11-18
Reference: [16] Mrkvička, T., Rataj, J.: On the estimation of intrinsic volume densities of stationary random closed sets.Stochastic Processes Appl. 118 (2008), 213-231. Zbl 1148.62023, MR 2376900
Reference: [17] Ohser, J., Mücklich, F.: Statistical Analysis of Microstructures in Materials Science.Wiley Series in Statistics in Practice Wiley, Chichester (2000).
Reference: [18] Pratt, W. K.: Digital Image Processing.Wiley & Sons, New York (2001).
Reference: [19] Team, R Development Core: R: A language and environment for statistical computing.R Found Stat Comp, Vienna. http://www.R-project.org/ (2010).
Reference: [20] Helisová, K. Staňková, Staněk, J.: Dimension reduction in extended Quermass-interaction process.Methodol. Comput. Appl. Probab. 16 (2014), 355-368. MR 3199051, 10.1007/s11009-013-9343-x
Reference: [21] Zikmundová, M., Helisová, K. Staňková, Beneš, V.: Spatio-temporal model for a random set given by a union of interacting discs.Methodol. Comput. Appl. Probab. 14 (2012), 883-894. MR 2966326, 10.1007/s11009-012-9287-6
Reference: [22] Zikmundová, M., Helisová, K. Staňková, Beneš, V.: On the use of particle Markov chain Monte Carlo in parameter estimation of space-time interacting discs.Methodol. Comput. Appl. Probab. 16 (2014), 451-463. MR 3199057, 10.1007/s11009-013-9367-2
.

Files

Files Size Format View
AplMat_61-2016-4_7.pdf 3.199Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo