Previous |  Up |  Next

Article

Title: Integrals of logarithmic and hypergeometric functions (English)
Author: Sofo, Anthony
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 24
Issue: 1
Year: 2016
Pages: 7-22
Summary lang: English
.
Category: math
.
Summary: Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers. (English)
Keyword: Logarithm function
Keyword: Hypergeometric functions
Keyword: Integral representation
Keyword: Lerch transcendent function
Keyword: Alternating harmonic numbers
Keyword: Combinatorial series identities
Keyword: Summation formulas
Keyword: Partial fraction approach
Keyword: Binomial coefficients.
MSC: 05A10
MSC: 05A19
MSC: 11B83
MSC: 11M06
MSC: 11Y60
MSC: 33C20
idZBL: Zbl 1352.05012
idMR: MR3546803
.
Date available: 2016-08-26T11:16:35Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145802
.
Reference: [1] Adamchik, V., Srivastava, H. M.: Some series of the zeta and related functions.Analysis, 18, 2, 1998, 131-144, Zbl 0919.11056, MR 1625172, 10.1524/anly.1998.18.2.131
Reference: [2] Borwein, J. M., Zucker, I. J., Boersma, J.: The evaluation of character Euler double sums.Ramanujan J., 15, 2008, 377-405, Zbl 1241.11108, MR 2390277, 10.1007/s11139-007-9083-z
Reference: [3] Choi, J.: Log-Sine and Log-Cosine Integrals.Honam Mathematical J, 35, 2, 2013, 137-146, Zbl 1278.33002, MR 3112095, 10.5831/HMJ.2013.35.2.137
Reference: [4] Choi, J., Cvijoviæ, D.: Values of the polygamma functions at rational arguments.J. Phys. A: Math. Theor., 40, 50, 2007, 15019-15028, Corrigendum, ibidem, 43 (2010), 239801 (1p). MR 2442610, 10.1088/1751-8113/40/50/007
Reference: [5] Choi, J.: Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers.J. Inequal. Appl., 49, 2013, 1-11, Zbl 1283.11115, MR 3031578
Reference: [6] Choi, J., Srivastava, H. M.: Some summation formulas involving harmonic numbers and generalized harmonic numbers.Math. Comput. Modelling., 54, 2011, 2220-2234, Zbl 1235.33006, MR 2834625, 10.1016/j.mcm.2011.05.032
Reference: [7] Chu, W.: Summation formulae involving harmonic numbers.Filomat, 26, 1, 2012, 143-152, Zbl 1289.05019, MR 3086693, 10.2298/FIL1201143C
Reference: [8] Ciaurri, O., Navas, L. M., Ruiz, F. J., Varano, J. L.: A simple computation of $\zeta (2k)$.Amer. Math. Monthly., 122, 5, 2015, 444-451, MR 3352803, 10.4169/amer.math.monthly.122.5.444
Reference: [9] Coffey, M. W., Lubbers, N.: On generalized harmonic number sums.Appl. Math. Comput., 217, 2010, 689-698, Zbl 1202.33001, MR 2678582
Reference: [10] Dattoli, G., Srivastava, H. M.: A note on harmonic numbers, umbral calculus and generating functions.Appl. Math. Lett. , 21, 7, 2008, 686-693, Zbl 1152.05306, MR 2423046, 10.1016/j.aml.2007.07.021
Reference: [11] Devoto, A., Duke, D. W.: Table of integrals and formulae for Feynman diagram calculation.La Rivista del Nuovo Cimento, 7, 6, 1984, 1-39, MR 0781905
Reference: [12] Flajolet, P., Salvy, B.: Euler sums and contour integral representations.Exp. Math., 7, 1, 1998, 15-35, Zbl 0920.11061, MR 1618286, 10.1080/10586458.1998.10504356
Reference: [13] Freitas, P.: Integrals of polylogarithmic functions, recurrence relations and associated Euler sums.Math. Comp., 74, 251, 2005, 1425-1440, Zbl 1086.33019, MR 2137010, 10.1090/S0025-5718-05-01747-3
Reference: [14] Kölbig, K.: The polygamma function $\psi (x)$ for $x=1/4$ and $x=3/4$.J. Comput. Appl. Math. , 75, 1996, 43-46, MR 1424884
Reference: [15] Liu, H., Wang, W.: Harmonic number identities via hypergeometric series and Bell polynomials.Integral Transforms Spec. Funct., 23, 2012, 49-68, Zbl 1269.33006, MR 2875570, 10.1080/10652469.2011.553718
Reference: [16] Mez?, I: Nonlinear Euler sums.Pacific J. Math. , 272, 1, 2014, 201-226, MR 3270178, 10.2140/pjm.2014.272.201
Reference: [17] Sitaramachandrarao, R.: A formula of S. Ramanujan.J. Number Theory, 25, 1987, 1-19, Zbl 0606.10032, MR 0871165, 10.1016/0022-314X(87)90012-6
Reference: [18] Sofo, A.: Computational Techniques for the Summation of Series.2003, Kluwer Academic/Plenum Publishers, New York, Zbl 1059.65002, MR 2020630
Reference: [19] Sofo, A.: Integral identities for sums.Math. Commun., 13, 2, 2008, 303-309, Zbl 1178.05002, MR 2488679
Reference: [20] Sofo, A.: Sums of derivatives of binomial coefficients.Adv. in Appl. Math., 42, 2009, 123-134, Zbl 1220.11025, MR 2475317, 10.1016/j.aam.2008.07.001
Reference: [21] Sofo, A.: Integral forms associated with harmonic numbers.Appl. Math. Comput., 207, 2, 2009, 365-372,
Reference: [22] Sofo, A., Srivastava, H. M.: Identities for the harmonic numbers and binomial coefficients.Ramanujan J., 25, 1, 2011, 93-113, Zbl 1234.11022, MR 2787293, 10.1007/s11139-010-9228-3
Reference: [23] Sofo, A.: Summation formula involving harmonic numbers.Anal. Math., 37, 1, 2011, 51-64, Zbl 1240.33006, MR 2784242, 10.1007/s10476-011-0103-2
Reference: [24] Sofo, A.: Quadratic alternating harmonic number sums.J. Number Theory, 154, 2015, 144-159, Zbl 1310.05014, MR 3339570, 10.1016/j.jnt.2015.02.013
Reference: [25] Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions.530, 2001, Kluwer Academic Publishers, London, Zbl 1014.33001, MR 1849375
Reference: [26] Srivastava, H. M., Choi, J.: Zeta and $q$-Zeta Functions and Associated Series and Integrals.2012, Elsevier Science Publishers, Amsterdam, London and New York, Zbl 1239.33002, MR 3294573
Reference: [27] Wang, W., Jia, C.: Harmonic number identities via the Newton-Andrews method.Ramanujan J., 35, 2, 2014, 263-285, Zbl 1306.05005, MR 3266481, 10.1007/s11139-013-9511-1
Reference: [28] Wei, C., Gong, D.: The derivative operator and harmonic number identities.Ramanujan J., 34, 3, 2014, 361-371, Zbl 1301.33010, MR 3231317, 10.1007/s11139-013-9510-2
Reference: [29] Wu, T. C., Tu, S. T., Srivastava, H. M.: Some combinatorial series identities associated with the digamma function and harmonic numbers.Appl. Math. Lett., 13, 3, 2000, 101-106, Zbl 0953.33001, MR 1755751, 10.1016/S0893-9659(99)00193-7
Reference: [30] Zheng, D. Y.: Further summation formulae related to generalized harmonic numbers.J. Math. Anal. Appl., 335, 1, 2007, 692-706, Zbl 1115.11054, MR 2340348, 10.1016/j.jmaa.2007.02.002
.

Files

Files Size Format View
ActaOstrav_24-2016-1_2.pdf 402.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo