Previous |  Up |  Next

Article

Title: Computing the determinantal representations of hyperbolic forms (English)
Author: Chien, Mao-Ting
Author: Nakazato, Hiroshi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 633-651
Summary lang: English
.
Category: math
.
Summary: The numerical range of an $n\times n$ matrix is determined by an $n$ degree hyperbolic ternary form. Helton-Vinnikov confirmed conversely that an $n$ degree hyperbolic ternary form admits a symmetric determinantal representation. We determine the types of Riemann theta functions appearing in the Helton-Vinnikov formula for the real symmetric determinantal representation of hyperbolic forms for the genus $g=1$. We reformulate the Fiedler-Helton-Vinnikov formulae for the genus $g=0,1$, and present an elementary computation of the reformulation. Several examples are provided for computing the real symmetric matrices using the reformulation. (English)
Keyword: determinantal representation
Keyword: hyperbolic form
Keyword: Riemann theta function
Keyword: numerical range
MSC: 14Q05
MSC: 15A60
idZBL: Zbl 06644024
idMR: MR3556858
DOI: 10.1007/s10587-016-0283-9
.
Date available: 2016-10-01T15:13:54Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145862
.
Reference: [1] Chien, M. T., Nakazato, H.: Elliptic modular invariants and numerical ranges.Linear Multilinear Algebra 63 (2015), 1501-1519. Zbl 1314.14056, MR 3304989, 10.1080/03081087.2014.947982
Reference: [2] Chien, M. T., Nakazato, H.: Determinantal representation of trigonometric polynomial curves via Sylvester method.Banach J. Math. Anal. 8 (2014), 269-278. Zbl 1283.15025, MR 3161694, 10.15352/bjma/1381782099
Reference: [3] Chien, M. T., Nakazato, H.: Singular points of cyclic weighted shift matrices.Linear Algebra Appl. 439 (2013), 4090-4100. Zbl 1283.15117, MR 3133478
Reference: [4] Chien, M. T., Nakazato, H.: Reduction of the $c$-numerical range to the classical numerical range.Linear Algebra Appl. 434 (2011), 615-624. Zbl 1210.15023, MR 2746068
Reference: [5] Deconinck, B., Heil, M., Bobenko, A., Hoeij, M. van, Schmies, M.: Computing Riemann theta functions.Math. Comput. 73 (2004), 1417-1442. MR 2047094, 10.1090/S0025-5718-03-01609-0
Reference: [6] Deconinck, B., Hoeji, M. van: Computing Riemann matrices of algebraic curves.Physica D 152-153 (2001), 28-46. MR 1837895
Reference: [7] Fiedler, M.: Pencils of real symmetric matrices and real algebraic curves.Linear Algebra Appl. 141 (1990), 53-60. Zbl 0709.15009, MR 1076103
Reference: [8] Fiedler, M.: Geometry of the numerical range of matrices.Linear Algebra Appl. 37 (1981), 81-96. Zbl 0452.15024, MR 0636211, 10.1016/0024-3795(81)90169-5
Reference: [9] Helton, J. W., Spitkovsky, I. M.: The possible shapes of numerical ranges.Oper. Matrices 6 (2012), 607-611. Zbl 1270.15014, MR 2987030, 10.7153/oam-06-41
Reference: [10] Helton, J. W., Vinnikov, V.: Linear matrix inequality representations of sets.Commun. Pure Appl. Math. 60 (2007), 654-674. MR 2292953, 10.1002/cpa.20155
Reference: [11] Hurwitz, A., Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen.Grundlehren der mathematischen Wissenschaften. Band 3 Springer, Berlin German (1964). Zbl 0135.12101, MR 0173749
Reference: [12] Kippenhahn, R.: Über den Wertevorrat einer Matrix.German Math. Nachr. 6 (1951), 193-228. Zbl 0044.16201, MR 0059242, 10.1002/mana.19510060306
Reference: [13] Lax, P. D.: Differential equations, difference equations and matrix theory.Commun. Pure Appl. Math. 11 (1958), 175-194. Zbl 0086.01603, MR 0098110
Reference: [14] Namba, M.: Geometry of Projective Algebraic Curves.Pure and Applied Mathematics 88 Marcel Dekker, New York (1984). Zbl 0556.14012, MR 0768929
Reference: [15] Plaumann, D., Sturmfels, B., Vinzant, C.: Computing linear matrix representations of Helton-Vinnikov curves.H. Dym et al. Mathematical Methods in Systems, Optimization, and Control Festschrift in honor of J. William Helton. Operator Theory: Advances and Applications 222 Birkhäuser, Basel 259-277 (2012). Zbl 1328.14093, MR 2962788
Reference: [16] Walker, R. J.: Algebraic Curves.Princeton Mathematical Series 13 Princeton University Press, Princeton (1950). Zbl 0039.37701, MR 0033083
Reference: [17] Wang, Z. X., Guo, D. R.: Special Functions.World Scientific Publishing, Teaneck (1989). Zbl 0724.33001, MR 1034956
Reference: [18] Wolfram, S.: The Mathematica Book.Wolfram Media, Cambridge University Press, Cambridge (1996). Zbl 0878.65001, MR 1404696
.

Files

Files Size Format View
CzechMathJ_66-2016-3_8.pdf 249.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo