Previous |  Up |  Next

Article

Title: New results about semi-positive matrices (English)
Author: Dorsey, Jonathan
Author: Gannon, Tom
Author: Johnson, Charles R.
Author: Turnansky, Morrison
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 621-632
Summary lang: English
.
Category: math
.
Summary: Our purpose is to present a number of new facts about the structure of semipositive matrices, involving patterns, spectra and Jordon form, sums and products, and matrix equivalence, etc. Techniques used to obtain the results may be of independent interest. Examples include: any matrix with at least two columns is a sum, and any matrix with at least two rows, a product, of semipositive matrices. Any spectrum of a real matrix with at least $2$ elements is the spectrum of a square semipositive matrix, and any real matrix, except for a negative scalar matrix, is similar to a semipositive matrix. M-matrices are generalized to the non-square case and sign patterns that require semipositivity are characterized. (English)
Keyword: sign semipositivity
Keyword: semipositive matrix
Keyword: M-matrix
Keyword: spectrum
Keyword: equivalence
MSC: 15A23
MSC: 15A39
MSC: 15A86
MSC: 15B48
MSC: 15B52
idZBL: Zbl 06644023
idMR: MR3556857
DOI: 10.1007/s10587-016-0282-x
.
Date available: 2016-10-01T15:12:30Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145861
.
Reference: [1] Berman, A., Neuman, M., Stern, R. J.: Nonnegative Matrices in Dynamic Systems.Pure and Applied Mathematics, A Wiley Interscience Publication John Wiley and Sons, New York (1989). MR 1019319
Reference: [2] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.SIAM, Philadelphia Classics in Applied Mathematics (1994). Zbl 0815.15016, MR 1298430
Reference: [3] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Computer Science and Applied Mathematics Academic Press, New York (1979). Zbl 0484.15016, MR 0544666
Reference: [4] Berman, A., Ward, R. C.: Classes of stable and semipositive matrices.Linear Algebra Appl. 21 (1978), 163-174. Zbl 0386.15015, MR 0480585, 10.1016/0024-3795(78)90040-X
Reference: [5] Berman, A., Ward, R. C.: Stability and semipositivity of real matrices.Bull. Am. Math. Soc. 83 (1977), 262-263. Zbl 0352.15010, MR 0422309, 10.1090/S0002-9904-1977-14295-X
Reference: [6] Fiedler, M., Pták, V.: Some generalizations of positive definiteness and monotonicity.Number. Math. 9 163-172 (1966). Zbl 0148.25801, MR 0209309, 10.1007/BF02166034
Reference: [7] Gale, D.: The Theory of Linear Economic Models.McGraw-Hill Book, New York (1960). MR 0115801
Reference: [8] Horn, R., Johnson, C. R.: Topics in Matrix Analysis.Cambridge University Press, Cambridge (1991). Zbl 0729.15001, MR 1091716
Reference: [9] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (1985). Zbl 0576.15001, MR 0832183
Reference: [10] Johnson, C. R., Kerr, M. K., Stanford, D. P.: Semipositivity of matrices.Linear Multilinear Algebra 37 (1994), 265-271. Zbl 0815.15018, MR 1310969, 10.1080/03081089408818329
Reference: [11] Johnson, C. R., McCuaig, W. D., Stanford, D. P.: Sign patterns that allow minimal semipositivity.Linear Algebra Appl. 223/224 (1995), 363-373. Zbl 0829.15017, MR 1340701
Reference: [12] Johnson, C. R., Stanford, D. P.: Qualitative semipositivity.Combinatorial and graph-theoretical problems in linear algebra IMA Vol. Math. Appl. 50 Springer, New York (1993), 99-105. Zbl 0791.15016, MR 1240958
Reference: [13] Johnson, C. R., Zheng, T.: Equilibrants, semipositive matrices, calculation and scaling.Linear Algebra Appl. 434 (2011), 1638-1647. Zbl 1211.15045, MR 2775743
Reference: [14] Mangasarian, O. L.: Nonlinear Programming.McGraw-Hill Book, New York (1969). Zbl 0194.20201, MR 0252038
Reference: [15] Mangasarian, O. L.: Characterizations of real matrices of monotone kind.SIAM Review 10 439-441 (1968). Zbl 0216.06203, MR 0237537, 10.1137/1010095
Reference: [16] Vandergraft, J. S.: Applications of partial orderings to the study of positive definiteness, monotonicity, and convergence of iterative methods for linear systems.SIAM J. Numer. Anal. 9 (1972), 97-104. Zbl 0234.65041, MR 0309971, 10.1137/0709011
Reference: [17] Werner, H. J.: Characterizations of minimal semipositivity.Linear Multilinear Algebra 37 (1994), 273-278. Zbl 0815.15017, MR 1310970, 10.1080/03081089408818330
.

Files

Files Size Format View
CzechMathJ_66-2016-3_7.pdf 194.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo