Previous |  Up |  Next

Article

Keywords:
doubly truncated random variable; generalized discrimination measure; likelihood ratio order; stochastic order; proportional hazard model; proportional reversed hazard model; monotone transformation
Summary:
Doubly truncated data appear in some applications with survival and astrological data. Analogous to the doubly truncated discrimination measure defined by Misagh and Yari (2012), a generalized discrimination measure between two doubly truncated non-negative random variables is proposed. Several bounds are obtained. It is remarked that the proposed measure can never be equal to a nonzero constant which is independent of the left and right truncated points. The effect of monotone transformations on the proposed measure is discussed. Finally, a simulation study is added to provide the estimates of the proposed discrimination measure.
References:
[1] Al-Rahman, Q. A., Kittaneh, I.: A measure of discrimination between two double truncated distributions. Commun. Stat., Theory Methods 44 (2015), 1797-1805. DOI 10.1080/03610926.2012.744051 | MR 3348305 | Zbl 1357.62301
[2] Asadi, M., Ebrahimi, N., Hamedani, G. G., Soofi, E. S.: Minimum dynamic discrimination information models. J. Appl. Probab. 42 (2005), 643-660. DOI 10.1017/S0021900200000681 | MR 2157511 | Zbl 1094.94013
[3] Asadi, M., Ebrahimi, N., Soofi, E. S.: Dynamic generalized information measures. Stat. Probab. Lett. 71 (2005), 85-98. DOI 10.1016/j.spl.2004.10.033 | MR 2125434 | Zbl 1058.62006
[4] Betensky, R. A., Martin, E. C.: Commentary: failure-rate functions for doubly-truncated random variables. IEEE Trans. Reliab. 52 (2003), 7-8. DOI 10.1109/TR.2002.807241
[5] Crescenzo, A. Di, Longobardi, M.: A measure of discrimination between past lifetime distributions. Stat. Probab. Lett. 67 (2004), 173-182. DOI 10.1016/j.spl.2003.11.019 | MR 2051701 | Zbl 1058.62088
[6] Ebrahimi, N., Kirmani, S. N. U. A.: A characterisation of the proportional hazards model through a measure of discrimination between two residual life distributions. Biometrika 83 (1996), 233-235. DOI 10.1093/biomet/83.1.233 | MR 1399168 | Zbl 0865.62075
[7] Ebrahimi, N., Kirmani, S. N. U. A.: A measure of discrimination between two residual life-time distributions and its applications. Ann. Inst. Stat. Math. 48 (1996), 257-265. DOI 10.1007/BF00054789 | MR 1405931 | Zbl 0861.62063
[8] Kayal, S.: Some results on dynamic discrimination measures of order {$(\alpha,\beta)$}. Hacet. J. Math. Stat. 44 (2015), 179-188. MR 3363775 | Zbl 1321.62124
[9] Kullback, S., Leibler, R. A.: On information and sufficiency. Ann. Math. Stat. 22 (1951), 79-86. DOI 10.1214/aoms/1177729694 | MR 0039968 | Zbl 0042.38403
[10] Kundu, C.: Generalized measures of information for truncated random variables. Metrika 78 (2015), 415-435. DOI 10.1007/s00184-014-0510-z | MR 3325289 | Zbl 1333.62030
[11] Misagh, F., Yari, G.: A novel entropy based measure of uncertainty to lifetime distributions characterizations. Proc. ICMS 10, Ref. No. 100196, Sharjah, UAE, 2010.
[12] Misagh, F., Yari, G.: Interval entropy and informative distance. Entropy (electronic only) 14 (2012), 480-490. DOI 10.3390/e14030480 | MR 2908831 | Zbl 1306.62214
[13] Park, S.: On Kullback-Leibler information of order statistics in terms of the relative risk. Metrika 77 (2014), 609-616. DOI 10.1007/s00184-013-0455-7 | MR 3217493 | Zbl 1335.62087
[14] Park, S., Shin, M.: Kullback-Leibler information of a censored variable and its applications. Statistics 48 (2014), 756-765. DOI 10.1080/02331888.2013.800070 | MR 3234059 | Zbl 1326.62013
[15] R{é}nyi, A.: On measures of entropy and information. Proc. 4th Berkeley Symp. Math. Stat. Probab., Vol. I Univ. California Press, Berkeley, Calif. (1961), 547-561. MR 0132570 | Zbl 0106.33001
[16] Ruiz, J. M., Navarro, J.: Characterizations based on conditional expectations of the doubled truncated distribution. Ann. Inst. Stat. Math. 48 (1996), 563-572. DOI 10.1007/BF00050855 | MR 1424782 | Zbl 0925.62059
[17] Sankaran, P. G., Sunoj, S. M.: Identification of models using failure rate and mean residual life of doubly truncated random variables. Stat. Pap. 45 (2004), 97-109. DOI 10.1007/BF02778272 | MR 2028057 | Zbl 1050.62017
[18] Shaked, M., Shanthikumar, J. G.: Stochastic Orders. Springer Series in Statistics Springer, New York (2007). MR 2265633
[19] Sunoj, S. M., Linu, M. N.: On bounds of some dynamic information divergence measures. Statistica 72 (2012), 23-36.
[20] Sunoj, S. M., Sankaran, P. G., Maya, S. S.: Characterizations of life distributions using conditional expectations of doubly (interval) truncated random variables. Commun. Stat., Theory Methods 38 (2009), 1441-1452. DOI 10.1080/03610920802455001 | MR 2538152 | Zbl 1165.62009
[21] Varma, R. S.: Generalizations of Renyi's entropy of order {$\alpha $}. J. Math. Sci. 1 (1966), 34-48. MR 0210515 | Zbl 0166.15401
[22] Wang, C., Chang, H.-H., Boughton, K. A.: Kullback-Leibler information and its applications in multi-dimensional adaptive testing. Psychometrika 76 (2011), 13-39. DOI 10.1007/s11336-010-9186-0 | MR 2783870 | Zbl 1208.62196
Partner of
EuDML logo