Previous |  Up |  Next

Article

Title: Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups (English)
Author: Zeng, Lingli
Author: Nan, Jizhu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 4
Year: 2016
Pages: 1059-1078
Summary lang: English
.
Category: math
.
Summary: Let $F$ be a finite field of characteristic $p$ and $K$ a field which contains a primitive $p$th root of unity and ${\rm char} K\neq p$. Suppose that a classical group $G$ acts on the $F$-vector space $V$. Then it can induce the actions on the vector space $V\oplus V$ and on the group algebra $K[V\oplus V]$, respectively. In this paper we determine the structure of $G$-invariant ideals of the group algebra $K[V\oplus V]$, and establish the relationship between the invariant ideals of $K[V]$ and the vector invariant ideals of $K[V\oplus V]$, if $G$ is a unitary group or orthogonal group. Combining the results obtained by Nan and Zeng (2013), we solve the problem of vector invariant ideals for all classical groups over finite fields. (English)
Keyword: vector invariant ideal
Keyword: group algebra
Keyword: unitary group
Keyword: orthogonal group
MSC: 16S34
MSC: 20G40
idZBL: Zbl 06674862
idMR: MR3572923
DOI: 10.1007/s10587-016-0310-x
.
Date available: 2016-11-26T20:50:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145919
.
Reference: [1] Brookes, C. J. B., Evans, D. M.: Augmentation modules for affine groups.Math. Proc. Camb. Philos. Soc. 130 (2001), 287-294. Zbl 1005.20005, MR 1806779, 10.1017/S0305004199003734
Reference: [2] Nan, J., Zeng, L.: Vector invariant ideals of abelian group algebras under the action of the symplectic groups.J. Algebra Appl. 12 (2013), Article ID 1350046, 12 pages. Zbl 1282.16030, MR 3092523
Reference: [3] Osterburg, J. M., Passman, D. S., Zalesskiĭ, A. E.: Invariant ideals of abelian group algebras under the multiplicative action of a field II.Proc. Am. Math. Soc. 130 (2002), 951-957. MR 1873766, 10.1090/S0002-9939-01-06338-9
Reference: [4] Passman, D. S.: Invariant ideals of abelian group algebras under the action of simple linear groups.Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 377-390. Zbl 1050.16016, MR 2015346
Reference: [5] Passman, D. S.: Finitary actions and invariant ideals.Turk. J. Math. 31, Suppl., (2007), 113-130. Zbl 1162.16014, MR 2369827
Reference: [6] Passman, D. S.: Invariant ideals of abelian group algebras under the torus action of a field I.J. Algebra 324 (2010), 3035-3043. Zbl 1217.16020, MR 2732986, 10.1016/j.jalgebra.2010.01.023
Reference: [7] Passman, D. S.: Invariant ideals of abelian group algebras under the torus action of a field II.J. Algebra 331 (2011), 362-377. Zbl 1235.16022, MR 2774663, 10.1016/j.jalgebra.2011.01.011
Reference: [8] Passman, D. S., Zalesskiĭ, A. E.: Invariant ideals of abelian group algebras under the multiplicative action of a field I.Proc. Am. Math. Soc. 130 (2002), 939-949. MR 1873765, 10.1090/S0002-9939-01-06092-0
Reference: [9] Richman, D. R.: On vector invariants over finite fields.Adv. Math. 81 (1990), 30-65. Zbl 0715.13002, MR 1051222, 10.1016/0001-8708(90)90003-6
Reference: [10] Richman, D. R.: Explicit generators of the invariants of finite groups.Adv. Math. 124 (1996), 49-76. Zbl 0879.13003, MR 1423198, 10.1006/aima.1996.0077
Reference: [11] Richman, D. R.: Invariants of finite groups over fields of characteristic $p$.Adv. Math. 124 (1996), 25-48. Zbl 0879.13004, MR 1423197, 10.1006/aima.1996.0076
Reference: [12] Wan, Z.: Geometry of classical groups over finite fields and its applications.Discrete Math. 174 (1997), 365-381. Zbl 0895.20040, MR 1477255, 10.1016/S0012-365X(96)00350-0
.

Files

Files Size Format View
CzechMathJ_66-2016-4_2.pdf 323.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo