Title:
|
Vector invariant ideals of abelian group algebras under the actions of the unitary groups and orthogonal groups (English) |
Author:
|
Zeng, Lingli |
Author:
|
Nan, Jizhu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
4 |
Year:
|
2016 |
Pages:
|
1059-1078 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $F$ be a finite field of characteristic $p$ and $K$ a field which contains a primitive $p$th root of unity and ${\rm char} K\neq p$. Suppose that a classical group $G$ acts on the $F$-vector space $V$. Then it can induce the actions on the vector space $V\oplus V$ and on the group algebra $K[V\oplus V]$, respectively. In this paper we determine the structure of $G$-invariant ideals of the group algebra $K[V\oplus V]$, and establish the relationship between the invariant ideals of $K[V]$ and the vector invariant ideals of $K[V\oplus V]$, if $G$ is a unitary group or orthogonal group. Combining the results obtained by Nan and Zeng (2013), we solve the problem of vector invariant ideals for all classical groups over finite fields. (English) |
Keyword:
|
vector invariant ideal |
Keyword:
|
group algebra |
Keyword:
|
unitary group |
Keyword:
|
orthogonal group |
MSC:
|
16S34 |
MSC:
|
20G40 |
idZBL:
|
Zbl 06674862 |
idMR:
|
MR3572923 |
DOI:
|
10.1007/s10587-016-0310-x |
. |
Date available:
|
2016-11-26T20:50:03Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145919 |
. |
Reference:
|
[1] Brookes, C. J. B., Evans, D. M.: Augmentation modules for affine groups.Math. Proc. Camb. Philos. Soc. 130 (2001), 287-294. Zbl 1005.20005, MR 1806779, 10.1017/S0305004199003734 |
Reference:
|
[2] Nan, J., Zeng, L.: Vector invariant ideals of abelian group algebras under the action of the symplectic groups.J. Algebra Appl. 12 (2013), Article ID 1350046, 12 pages. Zbl 1282.16030, MR 3092523 |
Reference:
|
[3] Osterburg, J. M., Passman, D. S., Zalesskiĭ, A. E.: Invariant ideals of abelian group algebras under the multiplicative action of a field II.Proc. Am. Math. Soc. 130 (2002), 951-957. MR 1873766, 10.1090/S0002-9939-01-06338-9 |
Reference:
|
[4] Passman, D. S.: Invariant ideals of abelian group algebras under the action of simple linear groups.Resen. Inst. Mat. Estat. Univ. São Paulo 5 (2002), 377-390. Zbl 1050.16016, MR 2015346 |
Reference:
|
[5] Passman, D. S.: Finitary actions and invariant ideals.Turk. J. Math. 31, Suppl., (2007), 113-130. Zbl 1162.16014, MR 2369827 |
Reference:
|
[6] Passman, D. S.: Invariant ideals of abelian group algebras under the torus action of a field I.J. Algebra 324 (2010), 3035-3043. Zbl 1217.16020, MR 2732986, 10.1016/j.jalgebra.2010.01.023 |
Reference:
|
[7] Passman, D. S.: Invariant ideals of abelian group algebras under the torus action of a field II.J. Algebra 331 (2011), 362-377. Zbl 1235.16022, MR 2774663, 10.1016/j.jalgebra.2011.01.011 |
Reference:
|
[8] Passman, D. S., Zalesskiĭ, A. E.: Invariant ideals of abelian group algebras under the multiplicative action of a field I.Proc. Am. Math. Soc. 130 (2002), 939-949. MR 1873765, 10.1090/S0002-9939-01-06092-0 |
Reference:
|
[9] Richman, D. R.: On vector invariants over finite fields.Adv. Math. 81 (1990), 30-65. Zbl 0715.13002, MR 1051222, 10.1016/0001-8708(90)90003-6 |
Reference:
|
[10] Richman, D. R.: Explicit generators of the invariants of finite groups.Adv. Math. 124 (1996), 49-76. Zbl 0879.13003, MR 1423198, 10.1006/aima.1996.0077 |
Reference:
|
[11] Richman, D. R.: Invariants of finite groups over fields of characteristic $p$.Adv. Math. 124 (1996), 25-48. Zbl 0879.13004, MR 1423197, 10.1006/aima.1996.0076 |
Reference:
|
[12] Wan, Z.: Geometry of classical groups over finite fields and its applications.Discrete Math. 174 (1997), 365-381. Zbl 0895.20040, MR 1477255, 10.1016/S0012-365X(96)00350-0 |
. |