Previous |  Up |  Next

Article

Title: A new family of spectrally arbitrary ray patterns (English)
Author: Mei, Yinzhen
Author: Gao, Yubin
Author: Shao, Yanling
Author: Wang, Peng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 4
Year: 2016
Pages: 1049-1058
Summary lang: English
.
Category: math
.
Summary: An $n\times n$ ray pattern $\mathcal {A}$ is called a spectrally arbitrary ray pattern if the complex matrices in $Q(\mathcal {A})$ give rise to all possible complex polynomials of degree $n$. \endgraf In a paper of Mei, Gao, Shao, and Wang (2014) was proved that the minimum number of nonzeros in an $n\times n$ irreducible spectrally arbitrary ray pattern is $3n-1$. In this paper, we introduce a new family of spectrally arbitrary ray patterns of order $n$ with exactly $3n-1$ nonzeros. (English)
Keyword: ray pattern
Keyword: potentially nilpotent
Keyword: spectrally arbitrary ray pattern
MSC: 15A18
MSC: 15A29
idZBL: Zbl 06674861
idMR: MR3572922
DOI: 10.1007/s10587-016-0309-3
.
Date available: 2016-11-26T20:49:03Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145917
.
Reference: [1] Drew, J. H., Johnson, C. R., Olesky, D. D., Driessche, P. van den: Spectrally arbitrary patterns.Linear Algebra Appl. 308 (2000), 121-137. MR 1751135
Reference: [2] Gao, Y., Shao, Y.: New classes of spectrally arbitrary ray patterns.Linear Algebra Appl. 434 (2011), 2140-2148. Zbl 1272.15019, MR 2781682
Reference: [3] McDonald, J. J., Stuart, J.: Spectrally arbitrary ray patterns.Linear Algebra Appl. 429 (2008), 727-734. Zbl 1143.15007, MR 2428126
Reference: [4] Mei, Y., Gao, Y., Shao, Y., Wang, P.: The minimum number of nonzeros in a spectrally arbitrary ray pattern.Linear Algebra Appl. 453 (2014), 99-109. Zbl 1328.15020, MR 3201687
.

Files

Files Size Format View
CzechMathJ_66-2016-4_1.pdf 237.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo