Title:
|
The classification of finite groups by using iteration digraphs (English) |
Author:
|
Ahmad, Uzma |
Author:
|
Moeen, Muqadas |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
4 |
Year:
|
2016 |
Pages:
|
1103-1117 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A digraph is associated with a finite group by utilizing the power map ${f\colon G \rightarrow G}$ defined by $f(x)=x^{k}$ for all $x\in G$, where $k$ is a fixed natural number. It is denoted by $\gamma _{G}(n,k)$. In this paper, the generalized quaternion and $2$-groups are studied. The height structure is discussed for the generalized quaternion. The necessary and sufficient conditions on a power digraph of a $2$-group are determined for a $2$-group to be a generalized quaternion group. Further, the classification of two generated $2$-groups as abelian or non-abelian in terms of semi-regularity of the power digraphs is completed. (English) |
Keyword:
|
$2$-group |
Keyword:
|
generalized quaternion group |
Keyword:
|
iteration digraph |
Keyword:
|
cycle |
Keyword:
|
indegree |
Keyword:
|
fixed point |
Keyword:
|
regular digraph |
MSC:
|
05C20 |
MSC:
|
05C25 |
MSC:
|
05C50 |
MSC:
|
20B25 |
MSC:
|
20D15 |
idZBL:
|
Zbl 06674864 |
idMR:
|
MR3572925 |
DOI:
|
10.1007/s10587-016-0312-8 |
. |
Date available:
|
2016-11-26T20:52:37Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145921 |
. |
Reference:
|
[1] Ahmad, U., Husnine, S.: The power digraphs of finite groups.(to appear) in Util. Math. |
Reference:
|
[2] Ahmad, U., Husnine, S.: Characterization of power digraphs modulo $n$.Commentat. Math. Univ. Carol. 52 (2011), 359-367. Zbl 1249.11002, MR 2843229 |
Reference:
|
[3] Ahmad, U., Moeen, M.: The digraphs arising by the power maps of generalized quaternion groups.(to appear) in J. Algebra Appl. DOI:10.1142/S0219498817501791. 10.1142/S0219498817501791 |
Reference:
|
[4] Ahmad, U., Syed, H.: On the heights of power digraphs modulo $n$.Czech. Math. J. 62 (2012), 541-556. Zbl 1265.05274, MR 2990193, 10.1007/s10587-012-0028-3 |
Reference:
|
[5] Blackburn, N.: Generalizations of certain elementary theorems on {$p$}-groups.Proc. Lond. Math. Soc. (3) 11 (1961), 1-22. Zbl 0102.01903, MR 0122876 |
Reference:
|
[6] Ćepuli{ć}, V., Pyliavska, O. S.: A class of nonabelian nonmetacyclic finite $2$-groups.Glas. Mat., Ser. (3) 41 (2006), 65-70. Zbl 1115.20015, MR 2242392, 10.3336/gm.41.1.06 |
Reference:
|
[7] Husnine, S. M., Ahmad, U., Somer, L.: On symmetries of power digraphs.Util. Math. 85 (2011), 257-271. Zbl 1251.05066, MR 2840802 |
Reference:
|
[8] Janko, Z.: A classification of finite $2$-groups with exactly three involutions.J. Algebra 291 (2005), 505-533. Zbl 1081.20025, MR 2163481, 10.1016/j.jalgebra.2005.02.007 |
Reference:
|
[9] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$.Fibonacci Q. 34 (1996), 226-239. Zbl 0855.05067, MR 1390409 |
Reference:
|
[10] Sha, M.: Digraphs from endomorphisms of finite cyclic groups.J. Comb. Math. Comb. Comput. 83 (2012), 105-120. Zbl 1302.05071, MR 3027303 |
Reference:
|
[11] Somer, L., Křížek, M.: On a connection of number theory with graph theory.Czech. Math. J. 54 (2004), 465-485. Zbl 1080.11004, MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58 |
Reference:
|
[12] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$.Commentat. Math. Univ. Carol. 48 (2007), 41-58. Zbl 1174.05058, MR 2338828 |
Reference:
|
[13] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k\equiv y\pmod n$.Discrete Math. 309 (2009), 1999-2009. Zbl 1208.05041, MR 2510326, 10.1016/j.disc.2008.04.009 |
Reference:
|
[14] Wilson, B.: Power digraphs modulo $n$.Fibonacci Q. 36 (1998), 229-239. Zbl 0936.05049, MR 1627384 |
. |