Previous |  Up |  Next

Article

Title: The classification of finite groups by using iteration digraphs (English)
Author: Ahmad, Uzma
Author: Moeen, Muqadas
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 4
Year: 2016
Pages: 1103-1117
Summary lang: English
.
Category: math
.
Summary: A digraph is associated with a finite group by utilizing the power map ${f\colon G \rightarrow G}$ defined by $f(x)=x^{k}$ for all $x\in G$, where $k$ is a fixed natural number. It is denoted by $\gamma _{G}(n,k)$. In this paper, the generalized quaternion and $2$-groups are studied. The height structure is discussed for the generalized quaternion. The necessary and sufficient conditions on a power digraph of a $2$-group are determined for a $2$-group to be a generalized quaternion group. Further, the classification of two generated $2$-groups as abelian or non-abelian in terms of semi-regularity of the power digraphs is completed. (English)
Keyword: $2$-group
Keyword: generalized quaternion group
Keyword: iteration digraph
Keyword: cycle
Keyword: indegree
Keyword: fixed point
Keyword: regular digraph
MSC: 05C20
MSC: 05C25
MSC: 05C50
MSC: 20B25
MSC: 20D15
idZBL: Zbl 06674864
idMR: MR3572925
DOI: 10.1007/s10587-016-0312-8
.
Date available: 2016-11-26T20:52:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145921
.
Reference: [1] Ahmad, U., Husnine, S.: The power digraphs of finite groups.(to appear) in Util. Math.
Reference: [2] Ahmad, U., Husnine, S.: Characterization of power digraphs modulo $n$.Commentat. Math. Univ. Carol. 52 (2011), 359-367. Zbl 1249.11002, MR 2843229
Reference: [3] Ahmad, U., Moeen, M.: The digraphs arising by the power maps of generalized quaternion groups.(to appear) in J. Algebra Appl. DOI:10.1142/S0219498817501791. 10.1142/S0219498817501791
Reference: [4] Ahmad, U., Syed, H.: On the heights of power digraphs modulo $n$.Czech. Math. J. 62 (2012), 541-556. Zbl 1265.05274, MR 2990193, 10.1007/s10587-012-0028-3
Reference: [5] Blackburn, N.: Generalizations of certain elementary theorems on {$p$}-groups.Proc. Lond. Math. Soc. (3) 11 (1961), 1-22. Zbl 0102.01903, MR 0122876
Reference: [6] Ćepuli{ć}, V., Pyliavska, O. S.: A class of nonabelian nonmetacyclic finite $2$-groups.Glas. Mat., Ser. (3) 41 (2006), 65-70. Zbl 1115.20015, MR 2242392, 10.3336/gm.41.1.06
Reference: [7] Husnine, S. M., Ahmad, U., Somer, L.: On symmetries of power digraphs.Util. Math. 85 (2011), 257-271. Zbl 1251.05066, MR 2840802
Reference: [8] Janko, Z.: A classification of finite $2$-groups with exactly three involutions.J. Algebra 291 (2005), 505-533. Zbl 1081.20025, MR 2163481, 10.1016/j.jalgebra.2005.02.007
Reference: [9] Lucheta, C., Miller, E., Reiter, C.: Digraphs from powers modulo $p$.Fibonacci Q. 34 (1996), 226-239. Zbl 0855.05067, MR 1390409
Reference: [10] Sha, M.: Digraphs from endomorphisms of finite cyclic groups.J. Comb. Math. Comb. Comput. 83 (2012), 105-120. Zbl 1302.05071, MR 3027303
Reference: [11] Somer, L., Křížek, M.: On a connection of number theory with graph theory.Czech. Math. J. 54 (2004), 465-485. Zbl 1080.11004, MR 2059267, 10.1023/B:CMAJ.0000042385.93571.58
Reference: [12] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$.Commentat. Math. Univ. Carol. 48 (2007), 41-58. Zbl 1174.05058, MR 2338828
Reference: [13] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k\equiv y\pmod n$.Discrete Math. 309 (2009), 1999-2009. Zbl 1208.05041, MR 2510326, 10.1016/j.disc.2008.04.009
Reference: [14] Wilson, B.: Power digraphs modulo $n$.Fibonacci Q. 36 (1998), 229-239. Zbl 0936.05049, MR 1627384
.

Files

Files Size Format View
CzechMathJ_66-2016-4_4.pdf 326.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo