Previous |  Up |  Next

Article

Title: On improper interval edge colourings (English)
Author: Hudák, Peter
Author: Kardoš, František
Author: Madaras, Tomáš
Author: Vrbjarová, Michaela
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 4
Year: 2016
Pages: 1119-1128
Summary lang: English
.
Category: math
.
Summary: We study improper interval edge colourings, defined by the requirement that the edge colours around each vertex form an integer interval. For the corresponding chromatic invariant (being the maximum number of colours in such a colouring), we present upper and lower bounds and discuss their qualities; also, we determine its values and estimates for graphs of various families, like wheels, prisms or complete graphs. The study of this parameter was inspired by the interval colouring, introduced by Asratian, Kamalian (1987). The difference is that we relax the requirement on the original colouring to be proper. (English)
Keyword: edge colouring
Keyword: interval colouring
Keyword: improper colouring
MSC: 05C15
idZBL: Zbl 06674865
idMR: MR3572926
DOI: 10.1007/s10587-016-0313-7
.
Date available: 2016-11-26T20:53:32Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145922
.
Reference: [1] Asratian, A. S., Kamalian, R. R.: Investigation of interval edge-colorings of graphs.J. Comb. Theory, Ser. B 62 (1994), 34-43. MR 1290629, 10.1006/jctb.1994.1053
Reference: [2] Asratyan, A. S., Kamalyan, R. R.: Interval colorings of edges of a multigraph.Prikl. Mat. Erevan Russian 5 (1987), 25-34. Zbl 0742.05038, MR 1003403
Reference: [3] Axenovich, M. A.: On interval colorings of planar graphs.Congr. Numerantium 159 (2002), 77-94. Zbl 1026.05036, MR 1985168
Reference: [4] Diestel, R.: Graph Theory.Graduate Texts in Mathematics 173 Springer, Berlin (2006). Zbl 1093.05001, MR 2159259
Reference: [5] Giaro, K.: The complexity of consecutive $\Delta$-coloring of bipartite graphs: 4 is easy, 5 is hard.Ars Comb. 47 (1997), 287-298. Zbl 0933.05050, MR 1487186
Reference: [6] Giaro, K., Kubale, M., Małafiejski, M.: On the deficiency of bipartite graphs.Discrete Appl. Math. 94 (1999), 193-203. Zbl 0933.05054, MR 1682166, 10.1016/S0166-218X(99)00021-9
Reference: [7] Giaro, K., Kubale, M., Małafiejski, M.: Consecutive colorings of the edges of general graphs.Discrete Math. 236 (2001), 131-143. Zbl 1007.05045, MR 1830605, 10.1016/S0012-365X(00)00437-4
Reference: [8] Janczewski, R., Małafiejska, A., Małafiejski, M.: Interval incidence graph coloring.Discrete Appl. Math. 182 (2015), 73-83. Zbl 1306.05062, MR 3301936, 10.1016/j.dam.2014.03.006
Reference: [9] Khachatrian, H. H., Petrosyan, P. A.: Interval edge-colorings of complete graphs. (2014), 18 pages.Available at arXiv:1411.5661 [cs.DM]. MR 3512339
Reference: [10] Petrosyan, P. A.: Interval edge-colorings of complete graphs and $n$-dimensional cubes.Discrete Math. 310 (2010), 1580-1587. Zbl 1210.05048, MR 2601268, 10.1016/j.disc.2010.02.001
Reference: [11] Sevast'yanov, S. V.: Interval colorability of the edges of a bipartite graph.Metody Diskret. Analiz. 50 (1990), 61-72 Russian. MR 1173570
.

Files

Files Size Format View
CzechMathJ_66-2016-4_5.pdf 277.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo