Title:
|
The groups of automorphisms of the Witt $W_n$ and Virasoro Lie algebras (English) |
Author:
|
Bavula, Vladimir V. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
4 |
Year:
|
2016 |
Pages:
|
1129-1141 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $L_n=K[x_1^{\pm 1} , \ldots , x_n^{\pm 1}]$ be a Laurent polynomial algebra over a field $K$ of characteristic zero, $W_n:= {\rm Der}_K(L_n)$ the Lie algebra of $K$-derivations of the algebra $L_n$, the so-called Witt Lie algebra, and let ${\rm Vir}$ be the Virasoro Lie algebra which is a $1$-dimensional central extension of the Witt Lie algebra. The Lie algebras $W_n$ and ${\rm Vir}$ are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: ${\rm Aut}_{{\rm Lie}} ({\rm Vir}) \simeq {\rm Aut}_{{\rm Lie}} (W_1) \simeq \{\pm 1\} \ltimes K^*$, and give a short proof that ${\rm Aut}_{{\rm Lie}} (W_n) \simeq {\rm Aut_{K-{\rm alg}}} (L_n)\simeq {\rm GL}_n(\mathbb {Z}) \ltimes K^{*n}$. (English) |
Keyword:
|
group of automorphisms |
Keyword:
|
monomorphism |
Keyword:
|
Lie algebra |
Keyword:
|
Witt algebra |
Keyword:
|
Virasoro algebra |
Keyword:
|
automorphism |
Keyword:
|
locally nilpotent derivation |
MSC:
|
17B20 |
MSC:
|
17B30 |
MSC:
|
17B40 |
MSC:
|
17B65 |
MSC:
|
17B66 |
idZBL:
|
Zbl 06674866 |
idMR:
|
MR3572927 |
DOI:
|
10.1007/s10587-016-0314-6 |
. |
Date available:
|
2016-11-26T20:54:24Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145923 |
. |
Reference:
|
[1] Bavula, V. V.: Every monomorphism of the Lie algebra of triangular polynomial derivations is an automorphism.C. R., Math., Acad. Sci. Paris 350 (2012), 553-556. Zbl 1264.17014, MR 2956141, 10.1016/j.crma.2012.06.001 |
Reference:
|
[2] Bavula, V. V.: Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras.Izv. Math. 77 (2013), 1067-1104. Zbl 1286.17022, MR 3184106, 10.1070/IM2013v077n06ABEH002670 |
Reference:
|
[3] Bavula, V. V.: The groups of automorphisms of the Lie algebras of triangular polynomial derivations.J. Pure Appl. Algebra 218 (2014), 829-851. Zbl 1281.17019, MR 3149637, 10.1016/j.jpaa.2013.10.004 |
Reference:
|
[4] Bavula, V. V.: The group of automorphisms of the Lie algebra of derivations of a polynomial algebra.Algebra Appl. 16 (2017), 175-183 DOI: http://dx.doi.org/10.1142/S0219498817500888. MR 3634093, 10.1142/S0219498817500888 |
Reference:
|
[5] Djoković, D. Ž., Zhao, K.: Derivations, isomorphisms, and second cohomology of generalized Witt algebras.Trans. Am. Math. Soc. 350 (1998), 643-664. Zbl 0952.17015, MR 1390977, 10.1090/S0002-9947-98-01786-3 |
Reference:
|
[6] Grabowski, J.: Isomorphisms and ideals of the Lie algebras of vector fields.Invent. Math. 50 (1978), 13-33. Zbl 0378.57010, MR 0516602, 10.1007/BF01406466 |
Reference:
|
[7] Grabowski, J., Poncin, N.: Automorphisms of quantum and classical Poisson algebras.Compos. Math. 140 (2004), 511-527. Zbl 1044.17013, MR 2027202, 10.1112/S0010437X0300006X |
Reference:
|
[8] Osborn, J. M.: Automorphisms of the Lie algebras $W^*$ in characteristic $0$.Can. J. Math. 49 (1997), 119-132. Zbl 0891.17018, MR 1437203, 10.4153/CJM-1997-006-5 |
Reference:
|
[9] Rudakov, A. N.: Subalgebras and automorphisms of Lie algebras of Cartan type.Funct. Anal. Appl. 20 (1986), 72-73. Zbl 0594.17015, MR 0831060, 10.1007/BF01077325 |
Reference:
|
[10] Shanks, M. E., Pursell, L. E.: The Lie algebra of a smooth manifold.Proc. Am. Math. Soc. 5 (1954), 468-472. Zbl 0055.42105, MR 0064764, 10.1090/S0002-9939-1954-0064764-3 |
. |